

Welcome to SUNCASA’s Documentation

Introduction

Welcome to the documentation for SUNCASA, a Python library dedicated to processing and analyzing solar radio observational data.

Contents:

	API Reference
	suncasa

	pmaxfit

	calibeovsa

	concateovsa

	pimfit

	ptclean

	importeovsa

	ptclean6

	subvs

Indices and tables

	Index

	Module Index

	Search Page

API Reference

This page contains auto-generated API reference documentation [1].

	suncasa
	suncasa.dspec
	suncasa.dspec.sources
	suncasa.dspec.sources.eovsa

	suncasa.dspec.sources.lwa

	suncasa.dspec.dspec

	suncasa.eovsa
	suncasa.eovsa.eovsa_IDBfiledownloader

	suncasa.eovsa.eovsa_diskmodel

	suncasa.eovsa.eovsa_dspec

	suncasa.eovsa.eovsa_fitsutils

	suncasa.eovsa.eovsa_flare_calib

	suncasa.eovsa.eovsa_flare_pipeline

	suncasa.eovsa.eovsa_pipeline

	suncasa.eovsa.eovsa_pipelineAlldayFits

	suncasa.eovsa.eovsa_pltQlookImage

	suncasa.eovsa.eovsa_pltQlookMovie

	suncasa.eovsa.eovsa_readfits

	suncasa.eovsa.eovsa_scaling

	suncasa.eovsa.eovsa_synoptic_imaging_pipeline

	suncasa.eovsa.impteovsa

	suncasa.eovsa.msUtils

	suncasa.io
	suncasa.io.ndfits

	suncasa.suncasatasks
	suncasa.suncasatasks.private
	suncasa.suncasatasks.private.task_calibeovsa

	suncasa.suncasatasks.private.task_concateovsa

	suncasa.suncasatasks.private.task_importeovsa

	suncasa.suncasatasks.private.task_pimfit

	suncasa.suncasatasks.private.task_pmaxfit

	suncasa.suncasatasks.private.task_ptclean

	suncasa.suncasatasks.private.task_ptclean6

	suncasa.suncasatasks.private.task_subvs

	suncasa.suncasatasks.buildsuncasatasks

	suncasa.suncasatasks.calibeovsa

	suncasa.suncasatasks.concateovsa

	suncasa.suncasatasks.importeovsa

	suncasa.suncasatasks.pimfit

	suncasa.suncasatasks.pmaxfit

	suncasa.suncasatasks.ptclean

	suncasa.suncasatasks.ptclean6

	suncasa.suncasatasks.signalsmooth

	suncasa.suncasatasks.subvs

	suncasa.utils
	suncasa.utils.DButil

	suncasa.utils.fit_planet_position

	suncasa.utils.helio_coordinates

	suncasa.utils.helioimage2fits

	suncasa.utils.idlsav2sunmap

	suncasa.utils.jdutil

	suncasa.utils.lightcurves

	suncasa.utils.lineticks

	suncasa.utils.mod_slftbs

	suncasa.utils.mstools

	suncasa.utils.plot_map

	suncasa.utils.plot_mapX

	suncasa.utils.pltutils

	suncasa.utils.qlookplot

	suncasa.utils.radio_data_fetch

	suncasa.utils.signal_utils

	suncasa.utils.signalsmooth

	suncasa.utils.stackplot

	suncasa.utils.stackplotX

	suncasa.utils.stputils

	suncasa.casa_compat

	pmaxfit

	calibeovsa

	concateovsa

	pimfit

	ptclean

	importeovsa

	ptclean6

	subvs

[1]
Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

suncasa

Subpackages

	suncasa.dspec
	suncasa.dspec.sources
	suncasa.dspec.sources.eovsa

	suncasa.dspec.sources.lwa

	suncasa.dspec.dspec

	suncasa.eovsa
	suncasa.eovsa.eovsa_IDBfiledownloader

	suncasa.eovsa.eovsa_diskmodel

	suncasa.eovsa.eovsa_dspec

	suncasa.eovsa.eovsa_fitsutils

	suncasa.eovsa.eovsa_flare_calib

	suncasa.eovsa.eovsa_flare_pipeline

	suncasa.eovsa.eovsa_pipeline

	suncasa.eovsa.eovsa_pipelineAlldayFits

	suncasa.eovsa.eovsa_pltQlookImage

	suncasa.eovsa.eovsa_pltQlookMovie

	suncasa.eovsa.eovsa_readfits

	suncasa.eovsa.eovsa_scaling

	suncasa.eovsa.eovsa_synoptic_imaging_pipeline

	suncasa.eovsa.impteovsa

	suncasa.eovsa.msUtils

	suncasa.io
	suncasa.io.ndfits

	suncasa.suncasatasks
	suncasa.suncasatasks.private
	suncasa.suncasatasks.private.task_calibeovsa

	suncasa.suncasatasks.private.task_concateovsa

	suncasa.suncasatasks.private.task_importeovsa

	suncasa.suncasatasks.private.task_pimfit

	suncasa.suncasatasks.private.task_pmaxfit

	suncasa.suncasatasks.private.task_ptclean

	suncasa.suncasatasks.private.task_ptclean6

	suncasa.suncasatasks.private.task_subvs

	suncasa.suncasatasks.buildsuncasatasks

	suncasa.suncasatasks.calibeovsa

	suncasa.suncasatasks.concateovsa

	suncasa.suncasatasks.importeovsa

	suncasa.suncasatasks.pimfit

	suncasa.suncasatasks.pmaxfit

	suncasa.suncasatasks.ptclean

	suncasa.suncasatasks.ptclean6

	suncasa.suncasatasks.signalsmooth

	suncasa.suncasatasks.subvs

	suncasa.utils
	suncasa.utils.DButil

	suncasa.utils.fit_planet_position

	suncasa.utils.helio_coordinates

	suncasa.utils.helioimage2fits

	suncasa.utils.idlsav2sunmap

	suncasa.utils.jdutil

	suncasa.utils.lightcurves

	suncasa.utils.lineticks

	suncasa.utils.mod_slftbs

	suncasa.utils.mstools

	suncasa.utils.plot_map

	suncasa.utils.plot_mapX

	suncasa.utils.pltutils

	suncasa.utils.qlookplot

	suncasa.utils.radio_data_fetch

	suncasa.utils.signal_utils

	suncasa.utils.signalsmooth

	suncasa.utils.stackplot

	suncasa.utils.stackplotX

	suncasa.utils.stputils

Submodules

	suncasa.casa_compat

suncasa.dspec

SunCASA Dspec

isort:skip_file

Subpackages

	suncasa.dspec.sources
	suncasa.dspec.sources.eovsa

	suncasa.dspec.sources.lwa

Submodules

	suncasa.dspec.dspec

Package Contents

Classes

	Dspec

	A class to handle dynamic spectra from radio observations.

	
class suncasa.dspec.Dspec(fname=None, specfile=None, bl='', uvrange='', field='', scan='', datacolumn='data', domedian=False, timeran=None, spw=None, timebin='0s', regridfreq=False, fillnan=None, verbose=False, usetbtool=True, ds_normalised=False)

	A class to handle dynamic spectra from radio observations.

	
data

	The dynamic spectrum data array.

	Type:

	numpy.ndarray

	
time_axis

	Time axis of the dynamic spectrum.

	Type:

	astropy.time.Time

	
freq_axis

	Frequency axis of the dynamic spectrum in Hz.

	Type:

	numpy.ndarray

	
telescope

	Name of the telescope used for the observation.

	Type:

	str

	
observatory

	Name of the observatory.

	Type:

	str

	
t_label

	Label for the time axis.

	Type:

	str

	
f_label

	Label for the frequency axis.

	Type:

	str

	
bl

	Baseline information.

	Type:

	str

	
uvrange

	UV range information.

	Type:

	str

	
pol

	Polarization information.

	Type:

	str

	
spec_unit

	Unit of the dynamic spectrum data (‘sfu’, ‘Jy’, or ‘K’).

	Type:

	str, default ‘sfu’

	
__init__(fname=None, specfile=None, **kwargs):

	Initializes the Dspec object by reading a FITS file or a saved numpy array.

	
read(fname, source=None, *args, **kwargs):

	Reads dynamic spectrum data from a file.

	
tofits(fitsfile=None, specdata=None, **kwargs):

	Writes the dynamic spectrum data to a FITS file.

	
get_dspec(fname=None, **kwargs):

	Extracts dynamic spectrum data from a measurement set.

	
wrt_dspec(specfile=None, specdat=None):

	Writes the dynamic spectrum data to a binary file.

	
rd_dspec(specdata, **kwargs):

	Reads dynamic spectrum data from a numpy file.

	
concat_dspec(specfiles, outfile=None, savespec=False):

	Concatenates multiple dynamic spectrum files along the time axis.

	
peek(*args, **kwargs):

	Plots the dynamic spectrum on the current axes.

	
plot(pol='I', **kwargs):

	Plots the dynamic spectrum for a given polarization.

	
data

	

	
time_axis

	

	
freq_axis

	

	
telescope

	

	
observatory

	

	
t_label

	

	
f_label

	

	
bl

	

	
uvrange

	

	
pol

	

	
spec_unit = 'sfu'

	

	
read(fname, source=None, *args, **kwargs)

	Reads dynamic spectrum data from a file.

	Parameters:

	
	fname (str) – The file name to read the dynamic spectrum data from.

	source (str, optional) – Specifies the data source (‘fits’, ‘suncasa’, or ‘lwa’) to determine the appropriate reader.

	source. (Additional parameters are passed to the specific reader function based on the) –

	
tofits(fitsfile=None, specdata=None, spectype='amp', spec_unit='jy', telescope='EOVSA', observatory='Owens Valley Radio Observatory', observer='EOVSA Team')

	Writes the dynamic spectrum data to a FITS file.

This method exports the stored dynamic spectrum data into a new FITS file, including relevant metadata and optional input spectrum data.

	Parameters:

	
	fitsfile (str, optional) – Path and name of the output FITS file. If not specified, a default name will be generated.

	specdata (dict, optional) – Input dictionary containing dynamic spectrum data and metadata. If not provided, the method uses the data stored in the Dspec object.

	spectype (str, optional) – Specifies the type of the spectrum to be saved (‘amp’ for amplitude, ‘pha’ for phase). Default is ‘amp’.

	spec_unit (str, optional) – Specifies the unit of the spectrum data (‘jy’ for Jansky, ‘sfu’ for Solar Flux Units, ‘k’ for Kelvin). Default is ‘jy’.

	telescope (str, optional) – Name of the telescope with which the data was obtained. Default is ‘EOVSA’.

	observatory (str, optional) – Name of the observatory. Default is ‘Owens Valley Radio Observatory’.

	observer (str, optional) – Name of the observer or team that made the observation. Default is ‘EOVSA Team’.

	Return type:

	None

	Raises:

	
	FileNotFoundError – If the specified fitsfile path does not exist.

	ValueError – If specdata is provided but does not contain the required keys.

Examples

>>> dspec = Dspec()
>>> dspec.tofits(fitsfile='output.fits', specdata=my_specdata, spec_unit='sfu', observer='Sun Observer')

Note

The method can directly utilize the dynamic spectrum data stored within the Dspec object if specdata is not provided. Ensure the Dspec object has been properly initialized with dynamic spectrum data before calling this method without specdata.

	
get_dspec(fname=None, specfile=None, bl='', uvrange='', field='', scan='', datacolumn='data', domedian=False, timeran=None, spw=None, timebin='0s', regridfreq=False, hanning=False, applyflag=True, fillnan=None, verbose=False, usetbtool=True, ds_normalised=False)

	

	
wrt_dspec(specfile=None, specdat=None)

	

	
rd_dspec(specdata, spectype='amp', spec_unit='jy')

	

	
concat_dspec(specfiles, outfile=None, savespec=False)

	concatenate a list of specfiles in time axis
:param specfiles: a list of specfile to concatenate
:return: concatenated specdata

	
peek(*args, **kwargs)

	Plot dynamaic spectrum onto current axes.

	Parameters:

	
	*args (dict) –

	**kwargs (dict) – Any additional plot arguments that should be used
when plotting.

	Returns:

	fig – A plot figure.

	Return type:

	~matplotlib.Figure

	
plot(pol='I', vmin=None, vmax=None, norm='log', cmap='viridis', cmap2='viridis', vmin2=None, vmax2=None, timerange=None, freqrange=None, ignore_gaps=True, freq_unit='GHz', spec_unit=None, plot_fast=False, percentile=[1, 99], minmaxpercentile=False, **kwargs)

	Plots the dynamic spectrum for a given polarization.

This method generates a plot of the dynamic spectrum, allowing for customization of the visualization through various parameters such as color maps, normalization, and value ranges.

	Parameters:

	
	pol (str, optional) – Polarization for plotting. Default is ‘I’.

	vmin (float, optional) – Minimum and maximum intensity values for the color scale. Defaults to None, which auto-scales.

	vmax (float, optional) – Minimum and maximum intensity values for the color scale. Defaults to None, which auto-scales.

	norm (str or matplotlib.colors.Normalize, optional) – Normalization of the color scale. Can be ‘linear’, ‘log’, or a custom normalization. Default is ‘log’.

	cmap (str, optional) – Matplotlib colormap names or instances for the plot and, optionally, a second polarization. Default is ‘viridis’.

	cmap2 (str, optional) – Matplotlib colormap names or instances for the plot and, optionally, a second polarization. Default is ‘viridis’.

	vmin2 (float, optional) – Minimum and maximum values for the color scale of the second polarization. Only used if a second polarization is plotted.

	vmax2 (float, optional) – Minimum and maximum values for the color scale of the second polarization. Only used if a second polarization is plotted.

	timerange (list of str, optional) – Time range to plot, formatted as [‘start_time’, ‘end_time’]. Times should be in ISO format. Defaults to None, which plots the entire range.

	freqrange (list of float, optional) – Frequency range to plot, in units specified by freq_unit. Defaults to None, which plots the entire range.

	ignore_gaps (bool, optional) – If True, ignores gaps in the frequency axis. Default is True.

	freq_unit (str, optional) – Unit for the frequency axis (‘kHz’, ‘MHz’, ‘GHz’). Default is ‘GHz’.

	spec_unit (str, optional) – Unit for the spectrum data (‘sfu’, ‘Jy’, or ‘K’). If not specified, uses the unit from the Dspec object.

	plot_fast (bool, optional) – If True, uses a faster plotting method which may reduce detail. Default is False.

	percentile (list of float, optional) – Percentile values to use for auto-scaling the color range. Default is [1, 99].

	minmaxpercentile (bool, optional) – If True, uses percentile for vmin and vmax. Default is False.

	Returns:

	fig – The matplotlib figure object containing the plot.

	Return type:

	matplotlib.figure.Figure

Examples

>>> dspec = Dspec()
>>> fig = dspec.plot(pol='I', vmin=0.1, vmax=5, cmap='hot', freqrange=[1, 2], timerange=['2021-01-01T00:00:00', '2021-01-01T01:00:00'])
>>> plt.show()

Notes

For dual-polarization plots (e.g., ‘RRLL’), cmap2 along with vmin2 and vmax2 can be specified to customize the appearance of the second polarization.

suncasa.dspec.sources

Submodules

	suncasa.dspec.sources.eovsa

	suncasa.dspec.sources.lwa

suncasa.dspec.sources.eovsa

Module Contents

Functions

	get_dspec(filename[, doplot, vmax, vmin, norm, cmap])

	Read EOVSA Dynamic Spectrum FITS file <filename> and return a spectrogram dictionary.

	
suncasa.dspec.sources.eovsa.get_dspec(filename, doplot=False, vmax=None, vmin=None, norm=None, cmap=None)

	Read EOVSA Dynamic Spectrum FITS file <filename> and return a spectrogram dictionary.
Optionally show an overview plot if doplot switch is set.

Example:

>>> from suncasa.eovsa import eovsa_dspec as ds
>>> from astropy.time import Time
>>> from matplotlib.colors import LogNorm
Read EOVSA Dynamic Spectrum FITS file <filename>
>>> filename = 'EOVSA_TPall_20170713.fts'
>>> s = ds.get_dspec(filename, doplot=True, cmap='gist_heat', norm=LogNorm(vmax=2.1e3, vmin=40))
To access the data in the spectrogram object, use
>>> spec = s['spectrogram'] ## (Array of amplitudes in SFU, of size nfreq,ntimes)
>>> fghz = s['spectrum_axis'] ## (Array of frequencies in GHz, of size nfreq)
>>> tim = Time(s['time_axis'], format='mjd') ## (Array of UT times in astropy.time object, of size ntimes)

	param filename:

	

	type filename:

	filename of the spectrogram fits file

	param doplot:

	

	type doplot:

	Boolean, optional

	param vmin:

	

	type vmin:

	scalar, optional

	param vmax:

	

	type vmax:

	scalar, optional

	param When using scalar data and no explicit norm:

	

	param vmin and vmax:

	

	param define the data range that the colormap covers. By default:

	

:param :
:param the colormap covers the complete value range of the supplied data.:
:param vmin:
:param vmax are ignored if the norm parameter is used.:
:param norm:
:type norm: matplotib.colors Normalization object or str, optional
:param The Normalize instance used to scale scalar data to the [0:
:param 1]:
:param range before mapping to colors using cmap. By default:
:param a linear:
:param scaling mapping the lowest value to 0 and the highest to 1 is used.:
:param This parameter is ignored for RGB(A) data.:
:param cmap:
:type cmap: matplotib.colors.Colormap or str
:param A colormap instance or the name of a registered colormap.:

	returns:

	spectrogram

	rtype:

	dictionary

suncasa.dspec.sources.lwa

Module Contents

Functions

	rebin1d(arr, new_len)

	

	rebin2d(arr, new_shape)

	

	timestamp_to_mjd(times)

	

	read_data(filename[, stokes, timerange, freqrange, ...])

	filename: name of the OVRO-LWA hdf5 beamforming file;

	
suncasa.dspec.sources.lwa.rebin1d(arr, new_len)

	

	
suncasa.dspec.sources.lwa.rebin2d(arr, new_shape)

	

	
suncasa.dspec.sources.lwa.timestamp_to_mjd(times)

	

	
suncasa.dspec.sources.lwa.read_data(filename, stokes='I', timerange=[], freqrange=[], timebin=1, freqbin=1, verbose=True)

	
	filename: name of the OVRO-LWA hdf5 beamforming file;
	This can be a string (single file) or a list of strings (multiple files)

stokes: currently supporting ‘XX’, ‘YY’, ‘I’, ‘Q’, ‘U’, ‘V’, ‘IV’
timerange: list of [start_time, end_time], start_time and end_time should be recognized by astropy.time.Time

e.g., [‘2023-09-22T18:00’, ‘2023-09-22T18:10’]

freqrange: list of [start_frequency, end_frequency] in MHz. Example: [23, 82]
timebin: number to bin in time
freqbin: number to bin in frequency
verbose: if True, print extra information

suncasa.dspec.dspec

Module Contents

Classes

	Dspec

	A class to handle dynamic spectra from radio observations.

	
class suncasa.dspec.dspec.Dspec(fname=None, specfile=None, bl='', uvrange='', field='', scan='', datacolumn='data', domedian=False, timeran=None, spw=None, timebin='0s', regridfreq=False, fillnan=None, verbose=False, usetbtool=True, ds_normalised=False)

	A class to handle dynamic spectra from radio observations.

	
data

	The dynamic spectrum data array.

	Type:

	numpy.ndarray

	
time_axis

	Time axis of the dynamic spectrum.

	Type:

	astropy.time.Time

	
freq_axis

	Frequency axis of the dynamic spectrum in Hz.

	Type:

	numpy.ndarray

	
telescope

	Name of the telescope used for the observation.

	Type:

	str

	
observatory

	Name of the observatory.

	Type:

	str

	
t_label

	Label for the time axis.

	Type:

	str

	
f_label

	Label for the frequency axis.

	Type:

	str

	
bl

	Baseline information.

	Type:

	str

	
uvrange

	UV range information.

	Type:

	str

	
pol

	Polarization information.

	Type:

	str

	
spec_unit

	Unit of the dynamic spectrum data (‘sfu’, ‘Jy’, or ‘K’).

	Type:

	str, default ‘sfu’

	
__init__(fname=None, specfile=None, **kwargs):

	Initializes the Dspec object by reading a FITS file or a saved numpy array.

	
read(fname, source=None, *args, **kwargs):

	Reads dynamic spectrum data from a file.

	
tofits(fitsfile=None, specdata=None, **kwargs):

	Writes the dynamic spectrum data to a FITS file.

	
get_dspec(fname=None, **kwargs):

	Extracts dynamic spectrum data from a measurement set.

	
wrt_dspec(specfile=None, specdat=None):

	Writes the dynamic spectrum data to a binary file.

	
rd_dspec(specdata, **kwargs):

	Reads dynamic spectrum data from a numpy file.

	
concat_dspec(specfiles, outfile=None, savespec=False):

	Concatenates multiple dynamic spectrum files along the time axis.

	
peek(*args, **kwargs):

	Plots the dynamic spectrum on the current axes.

	
plot(pol='I', **kwargs):

	Plots the dynamic spectrum for a given polarization.

	
data

	

	
time_axis

	

	
freq_axis

	

	
telescope

	

	
observatory

	

	
t_label

	

	
f_label

	

	
bl

	

	
uvrange

	

	
pol

	

	
spec_unit = 'sfu'

	

	
read(fname, source=None, *args, **kwargs)

	Reads dynamic spectrum data from a file.

	Parameters:

	
	fname (str) – The file name to read the dynamic spectrum data from.

	source (str, optional) – Specifies the data source (‘fits’, ‘suncasa’, or ‘lwa’) to determine the appropriate reader.

	source. (Additional parameters are passed to the specific reader function based on the) –

	
tofits(fitsfile=None, specdata=None, spectype='amp', spec_unit='jy', telescope='EOVSA', observatory='Owens Valley Radio Observatory', observer='EOVSA Team')

	Writes the dynamic spectrum data to a FITS file.

This method exports the stored dynamic spectrum data into a new FITS file, including relevant metadata and optional input spectrum data.

	Parameters:

	
	fitsfile (str, optional) – Path and name of the output FITS file. If not specified, a default name will be generated.

	specdata (dict, optional) – Input dictionary containing dynamic spectrum data and metadata. If not provided, the method uses the data stored in the Dspec object.

	spectype (str, optional) – Specifies the type of the spectrum to be saved (‘amp’ for amplitude, ‘pha’ for phase). Default is ‘amp’.

	spec_unit (str, optional) – Specifies the unit of the spectrum data (‘jy’ for Jansky, ‘sfu’ for Solar Flux Units, ‘k’ for Kelvin). Default is ‘jy’.

	telescope (str, optional) – Name of the telescope with which the data was obtained. Default is ‘EOVSA’.

	observatory (str, optional) – Name of the observatory. Default is ‘Owens Valley Radio Observatory’.

	observer (str, optional) – Name of the observer or team that made the observation. Default is ‘EOVSA Team’.

	Return type:

	None

	Raises:

	
	FileNotFoundError – If the specified fitsfile path does not exist.

	ValueError – If specdata is provided but does not contain the required keys.

Examples

>>> dspec = Dspec()
>>> dspec.tofits(fitsfile='output.fits', specdata=my_specdata, spec_unit='sfu', observer='Sun Observer')

Note

The method can directly utilize the dynamic spectrum data stored within the Dspec object if specdata is not provided. Ensure the Dspec object has been properly initialized with dynamic spectrum data before calling this method without specdata.

	
get_dspec(fname=None, specfile=None, bl='', uvrange='', field='', scan='', datacolumn='data', domedian=False, timeran=None, spw=None, timebin='0s', regridfreq=False, hanning=False, applyflag=True, fillnan=None, verbose=False, usetbtool=True, ds_normalised=False)

	

	
wrt_dspec(specfile=None, specdat=None)

	

	
rd_dspec(specdata, spectype='amp', spec_unit='jy')

	

	
concat_dspec(specfiles, outfile=None, savespec=False)

	concatenate a list of specfiles in time axis
:param specfiles: a list of specfile to concatenate
:return: concatenated specdata

	
peek(*args, **kwargs)

	Plot dynamaic spectrum onto current axes.

	Parameters:

	
	*args (dict) –

	**kwargs (dict) – Any additional plot arguments that should be used
when plotting.

	Returns:

	fig – A plot figure.

	Return type:

	~matplotlib.Figure

	
plot(pol='I', vmin=None, vmax=None, norm='log', cmap='viridis', cmap2='viridis', vmin2=None, vmax2=None, timerange=None, freqrange=None, ignore_gaps=True, freq_unit='GHz', spec_unit=None, plot_fast=False, percentile=[1, 99], minmaxpercentile=False, **kwargs)

	Plots the dynamic spectrum for a given polarization.

This method generates a plot of the dynamic spectrum, allowing for customization of the visualization through various parameters such as color maps, normalization, and value ranges.

	Parameters:

	
	pol (str, optional) – Polarization for plotting. Default is ‘I’.

	vmin (float, optional) – Minimum and maximum intensity values for the color scale. Defaults to None, which auto-scales.

	vmax (float, optional) – Minimum and maximum intensity values for the color scale. Defaults to None, which auto-scales.

	norm (str or matplotlib.colors.Normalize, optional) – Normalization of the color scale. Can be ‘linear’, ‘log’, or a custom normalization. Default is ‘log’.

	cmap (str, optional) – Matplotlib colormap names or instances for the plot and, optionally, a second polarization. Default is ‘viridis’.

	cmap2 (str, optional) – Matplotlib colormap names or instances for the plot and, optionally, a second polarization. Default is ‘viridis’.

	vmin2 (float, optional) – Minimum and maximum values for the color scale of the second polarization. Only used if a second polarization is plotted.

	vmax2 (float, optional) – Minimum and maximum values for the color scale of the second polarization. Only used if a second polarization is plotted.

	timerange (list of str, optional) – Time range to plot, formatted as [‘start_time’, ‘end_time’]. Times should be in ISO format. Defaults to None, which plots the entire range.

	freqrange (list of float, optional) – Frequency range to plot, in units specified by freq_unit. Defaults to None, which plots the entire range.

	ignore_gaps (bool, optional) – If True, ignores gaps in the frequency axis. Default is True.

	freq_unit (str, optional) – Unit for the frequency axis (‘kHz’, ‘MHz’, ‘GHz’). Default is ‘GHz’.

	spec_unit (str, optional) – Unit for the spectrum data (‘sfu’, ‘Jy’, or ‘K’). If not specified, uses the unit from the Dspec object.

	plot_fast (bool, optional) – If True, uses a faster plotting method which may reduce detail. Default is False.

	percentile (list of float, optional) – Percentile values to use for auto-scaling the color range. Default is [1, 99].

	minmaxpercentile (bool, optional) – If True, uses percentile for vmin and vmax. Default is False.

	Returns:

	fig – The matplotlib figure object containing the plot.

	Return type:

	matplotlib.figure.Figure

Examples

>>> dspec = Dspec()
>>> fig = dspec.plot(pol='I', vmin=0.1, vmax=5, cmap='hot', freqrange=[1, 2], timerange=['2021-01-01T00:00:00', '2021-01-01T01:00:00'])
>>> plt.show()

Notes

For dual-polarization plots (e.g., ‘RRLL’), cmap2 along with vmin2 and vmax2 can be specified to customize the appearance of the second polarization.

suncasa.eovsa

Submodules

	suncasa.eovsa.eovsa_IDBfiledownloader

	suncasa.eovsa.eovsa_diskmodel

	suncasa.eovsa.eovsa_dspec

	suncasa.eovsa.eovsa_fitsutils

	suncasa.eovsa.eovsa_flare_calib

	suncasa.eovsa.eovsa_flare_pipeline

	suncasa.eovsa.eovsa_pipeline

	suncasa.eovsa.eovsa_pipelineAlldayFits

	suncasa.eovsa.eovsa_pltQlookImage

	suncasa.eovsa.eovsa_pltQlookMovie

	suncasa.eovsa.eovsa_readfits

	suncasa.eovsa.eovsa_scaling

	suncasa.eovsa.eovsa_synoptic_imaging_pipeline

	suncasa.eovsa.impteovsa

	suncasa.eovsa.msUtils

suncasa.eovsa.eovsa_IDBfiledownloader

Module Contents

Functions

	get_times_from_web(link)

	

	eovsa_filedownloader(trange[, outpath])

	

	
suncasa.eovsa.eovsa_IDBfiledownloader.get_times_from_web(link)

	

	
suncasa.eovsa.eovsa_IDBfiledownloader.eovsa_filedownloader(trange, outpath='./')

	

suncasa.eovsa.eovsa_diskmodel

Module Contents

Functions

	ant_trange(vis)

	Figure out nominal times for tracking of old EOVSA antennas, and return time

	gaussian2d(x, y, amplitude, x0, y0, sigma_x, sigma_y, ...)

	

	writediskxml(dsize, fdens, freq[, xmlfile])

	

	readdiskxml(xmlfile)

	

	image_adddisk(eofile, diskinfo[, edgeconvmode, caltbonly])

	
	param eofile:

	

	read_ms(vis)

	Read a CASA ms file and return a dictionary of amplitude, phase, uvdistance,

	im2cl(imname, clname[, convol, verbose])

	

	fit_diskmodel(out, bidx, rstn_flux[, uvfitrange, ...])

	Given the result returned by read_ms(), plots the amplitude vs. uvdistance

	fit_vs_freq(out)

	

	calc_diskmodel(slashdate, nbands, freq, defaultfreq)

	

	mk_diskmodel([outname, direction, reffreq, flux, ...])

	Create a blank solar disk model image (or optionally a data cube)

	insertdiskmodel(vis[, sizescale, fdens, dsize, ...])

	

	disk_slfcal(vis[, slfcaltbdir, active, clearcache, pols])

	Starting with the name of a calibrated ms (vis, which must have 'UDByyyymmdd' in the name)

	fd_images(vis[, cleanup, niter, spws, imgoutdir, ...])

	Create standard full-disk images in "images" subdirectory of the current directory.

	feature_slfcal(vis[, niter, uvrange, spws, ...])

	Uses images from disk-selfcaled data as model for further self-calibration of outer antennas.

	plt_eovsa_image(eofiles[, figoutdir])

	

	pipeline_run(vis[, outputvis, workdir, slfcaltbdir, ...])

	

Attributes

	tb

	

	spw2band

	

	defaultfreq

	

	
suncasa.eovsa.eovsa_diskmodel.tb

	

	
suncasa.eovsa.eovsa_diskmodel.spw2band

	

	
suncasa.eovsa.eovsa_diskmodel.defaultfreq

	

	
suncasa.eovsa.eovsa_diskmodel.ant_trange(vis)

	Figure out nominal times for tracking of old EOVSA antennas, and return time
range in CASA format

	
suncasa.eovsa.eovsa_diskmodel.gaussian2d(x, y, amplitude, x0, y0, sigma_x, sigma_y, theta)

	

	
suncasa.eovsa.eovsa_diskmodel.writediskxml(dsize, fdens, freq, xmlfile='SOLDISK.xml')

	

	
suncasa.eovsa.eovsa_diskmodel.readdiskxml(xmlfile)

	

	
suncasa.eovsa.eovsa_diskmodel.image_adddisk(eofile, diskinfo, edgeconvmode='frommergeddisk', caltbonly=False)

	
	Parameters:

	
	eofile –

	diskxmlfile –

	edgeconvmode – available mode: frommergeddisk,frombeam

	Returns:

	

	
suncasa.eovsa.eovsa_diskmodel.read_ms(vis)

	Read a CASA ms file and return a dictionary of amplitude, phase, uvdistance,
uvangle, frequency (GHz) and time (MJD). Currently only returns the XX IF channel.
vis Name of the visibility (ms) folder

	
suncasa.eovsa.eovsa_diskmodel.im2cl(imname, clname, convol=True, verbose=False)

	

	
suncasa.eovsa.eovsa_diskmodel.fit_diskmodel(out, bidx, rstn_flux, uvfitrange=[1, 150], angle_tolerance=np.pi / 2, doplot=True)

	Given the result returned by read_ms(), plots the amplitude vs. uvdistance
separately for polar and equatorial directions rotated for P-angle, then overplots
a disk model for a disk enlarged by eqfac in the equatorial direction, and polfac
in the polar direction. Also requires the RSTN flux spectrum for the date of the ms,
determined from (example for 2019-09-01):

import rstn
frq, flux = rstn.rd_rstnflux(t=Time(‘2019-09-01’))
rstn_flux = rstn.rstn2ant(frq, flux, out[‘fghz’]*1000, t=Time(‘2019-09-01’))

	
suncasa.eovsa.eovsa_diskmodel.fit_vs_freq(out)

	

	
suncasa.eovsa.eovsa_diskmodel.calc_diskmodel(slashdate, nbands, freq, defaultfreq)

	

	
suncasa.eovsa.eovsa_diskmodel.mk_diskmodel(outname='disk', direction='J2000 10h00m00.0s 20d00m00.0s', reffreq='2.8GHz', flux=660000.0, eqradius='16.166arcmin', polradius='16.166arcmin', pangle='21.1deg', overwrite=True)

	Create a blank solar disk model image (or optionally a data cube)
outname String to use for part of the image and fits file names (default ‘disk’)
direction String specifying the position of the Sun in RA and Dec. Default

means use the standard string “J2000 10h00m00.0s 20d00m00.0s”

	reffreq The reference frequency to use for the disk model (the frequency at which
	the flux level applies). Default is ‘2.8GHz’.

flux The flux density, in Jy, for the entire disk. Default is 66 sfu.
eqradius The equatorial radius of the disk. Default is

16 arcmin + 10” (for typical extension of the radio limb)

	polradius The polar radius of the disk. Default is
	16 arcmin + 10” (for typical extension of the radio limb)

	pangle The solar P-angle (geographic position of the N-pole of the Sun) in
	degrees E of N. This only matters if eqradius != polradius

	index The spectral index to use at other frequencies. Default None means
	use a constant flux density for all frequencies.

	cell The cell size (assumed square) to use for the image. The image size
	is determined from a standard radius of 960” for the Sun, divided by
cell size, increased to nearest power of 512 pixels. The default is ‘2.0arcsec’,
which results in an image size of 1024 x 1024.

	Note that the frequency increment used is ‘325MHz’, which is the width of EOVSA bands
	(not the width of individual science channels)

	
suncasa.eovsa.eovsa_diskmodel.insertdiskmodel(vis, sizescale=1.0, fdens=None, dsize=None, xmlfile='SOLDISK.xml', writediskinfoonly=False, active=False, overwrite=True)

	

	
suncasa.eovsa.eovsa_diskmodel.disk_slfcal(vis, slfcaltbdir='./', active=False, clearcache=False, pols='XX')

	Starting with the name of a calibrated ms (vis, which must have ‘UDByyyymmdd’ in the name)
add a model disk based on the solar disk size for that date and perform multiple selfcal
adjustments (two phase and one amplitude), and write out a final selfcaled database with
the disk subtracted. Returns the name of the final database.

	
suncasa.eovsa.eovsa_diskmodel.fd_images(vis, cleanup=False, niter=None, spws=['0~1', '2~5', '6~10', '11~20', '21~30', '31~43'], imgoutdir='./', bright=None, stokes='XX')

	Create standard full-disk images in “images” subdirectory of the current directory.
If cleanup is True, delete those images after completion, leaving only the fits images.

	
suncasa.eovsa.eovsa_diskmodel.feature_slfcal(vis, niter=200, uvrange='>1.5Klambda', spws=['0~1', '2~5', '6~10', '11~20', '21~30', '31~49'], slfcaltbdir='./', bright=None, pols='XX')

	Uses images from disk-selfcaled data as model for further self-calibration of outer antennas.
This is only a good idea if there are bright active regions that provide strong signal on the
long baselines.

	
suncasa.eovsa.eovsa_diskmodel.plt_eovsa_image(eofiles, figoutdir='./')

	

	
suncasa.eovsa.eovsa_diskmodel.pipeline_run(vis, outputvis='', workdir=None, slfcaltbdir=None, imgoutdir=None, figoutdir=None, clearcache=False, pols='XX')

	

suncasa.eovsa.eovsa_dspec

Module Contents

Functions

	get_dspec(filename[, doplot, vmax, vmin, norm, cmap])

	Reads and optionally plots an EOVSA Dynamic Spectrum from a FITS file.

	
suncasa.eovsa.eovsa_dspec.get_dspec(filename, doplot=False, vmax=None, vmin=None, norm=None, cmap=None)

	Reads and optionally plots an EOVSA Dynamic Spectrum from a FITS file.

This function reads a FITS file containing EOVSA dynamic spectrum data, returning the data as a dictionary. If requested, it also generates a plot of the dynamic spectrum.

	Parameters:

	
	filename (str) – Path and name of the EOVSA dynamic spectrum FITS file to read.

	doplot (bool, optional) – If True, generates a plot of the dynamic spectrum. Default is False.

	vmin (float, optional) – Minimum value for the color scale. Ignored if norm is provided. Default is None, which autoscales.

	vmax (float, optional) – Maximum value for the color scale. Ignored if norm is provided. Default is None, which autoscales.

	norm (matplotlib.colors.Normalize or None, optional) – Normalization for the color scale of the plot. If None, a linear scaling is used. Default is None.

	cmap (str or matplotlib.colors.Colormap, optional) – Colormap for the dynamic spectrum plot. Can be a colormap name or an instance. Default is None, which uses the default colormap.

	Returns:

	A dictionary containing the dynamic spectrum data (spectrogram), frequency axis (spectrum_axis in GHz), and time axis (time_axis in modified Julian date).

	Return type:

	dict

Example

from suncasa.eovsa import eovsa_dspec as ds
from astropy.time import Time
from matplotlib.colors import LogNorm

Read EOVSA Dynamic Spectrum FITS file <filename>
filename = 'EOVSA_TPall_20170713.fts'
s = ds.get_dspec(filename, doplot=True, cmap='gist_heat', norm=LogNorm(vmax=2.1e3, vmin=40))

To access the data in the spectrogram object, use
spec = s['spectrogram'] # Array of amplitudes in SFU, of size nfreq,ntimes
fghz = s['spectrum_axis'] # Array of frequencies in GHz, of size nfreq
tim = Time(s['time_axis'], format='mjd') # Array of UT times in astropy.time object, of size ntimes

suncasa.eovsa.eovsa_fitsutils

Module Contents

Functions

	rewriteImageFits(datestr[, verbose, writejp2, ...])

	

	main([year, month, day, ndays, overwritejp2, ...])

	

Attributes

	imgfitsdir

	

	imgfitsbkdir

	

	year

	

	
suncasa.eovsa.eovsa_fitsutils.imgfitsdir = '/data1/eovsa/fits/synoptic/'

	

	
suncasa.eovsa.eovsa_fitsutils.imgfitsbkdir = '/data1/workdir/synoptic_newbk/'

	

	
suncasa.eovsa.eovsa_fitsutils.rewriteImageFits(datestr, verbose=False, writejp2=False, overwritejp2=False, overwritefits=False)

	

	
suncasa.eovsa.eovsa_fitsutils.main(year=None, month=None, day=None, ndays=1, overwritejp2=False, overwritefits=False)

	

	
suncasa.eovsa.eovsa_fitsutils.year

	

suncasa.eovsa.eovsa_flare_calib

Module Contents

Functions

	import_calib_idb(trange[, workdir, ncpu, timebin, width])

	Script to import and calibrate IDB data based on an input time range

	
suncasa.eovsa.eovsa_flare_calib.import_calib_idb(trange, workdir=None, ncpu=1, timebin='0s', width=1)

	Script to import and calibrate IDB data based on an input time range
:param trange: Example: Time([‘2022-11-12 17:55:00’, ‘2022-11-12 18:10:00’])
:type trange: [begin_time, end_time], in eovsa.util Time format.
:param workdir:
:type workdir: specify where the working directory is. Default to current path

	Returns:

	vis_out

	Return type:

	concatenated CASA measurement set with initial gain, amplitude, and phase calibrations applied

suncasa.eovsa.eovsa_flare_pipeline

Module Contents

Classes

	FlareSelfCalib

	

Attributes

	start

	

	ia

	

	ms

	

	msmd

	

	tb

	

	
suncasa.eovsa.eovsa_flare_pipeline.start

	

	
suncasa.eovsa.eovsa_flare_pipeline.ia

	

	
suncasa.eovsa.eovsa_flare_pipeline.ms

	

	
suncasa.eovsa.eovsa_flare_pipeline.msmd

	

	
suncasa.eovsa.eovsa_flare_pipeline.tb

	

	
class suncasa.eovsa.eovsa_flare_pipeline.FlareSelfCalib(vis=None, workpath='./', logfile=None)

	
	
property vis

	Getting the input visibility for self-calibration

	
property slfcal_spws

	Rteurn the spws chosen for selfcal

	
vis_info()

	

	
static get_img_center_heliocoords(images)

	Provide a set of images in helioprojective coordinates (at different frequencies), find the peak location
:param images:
:type images: list of fits image files

	Returns:

	xycen

	Return type:

	solar x and y coordinates, in arcsec

	
static find_sidelobe_level(image)

	

	
static check_shift(image, shift, cell)

	

	
static grow_mask(image, mask, thres)

	

	
static get_spw_num(visibility)

	

	
static get_descids(visibility)

	Retrieve actual descids from the DATA_DESCRIPTION table.
Unusually, the DATA_DESCRIPTION table may contain duplicated rows featuring
the same SPECTRAL_WINDOW_ID, yet pointing to null or dummy data.
This can cause a KeyError: ‘axis_info’ when attempting to read the ‘data’ variable in calc_cellsize,
as the loop iterating over ‘i’ in ms.selectinit(datadescid=i) within calc_cellsize
fails to locate the corresponding data due to its non-existence.

	Parameters:

	visibility –

	Returns:

	

	
static calc_cellsize(visibility)

	

	
static get_ref_freqlist(visibility)

	

	
static read_bandpass(bptable, nant=16)

	

	
static combine_groups(group, pos)

	

	
static gen_fof_groups(data3, thres)

	

	
gen_mask(image1, image2, mask1, mask2, threshold, imsize, s, make_shifted_mask=False, grow_threshold=0.5)

	We will allow for small shifts and small change of size ere

	
confirm_maximum_pixel(imagename, mask, spwran, msname, uvrange, imsize, cell, s)

	

	
static restore_previous_condition(imagename)

	

	
static flag_data_gap(visibility, sp)

	

	
get_img_stat(imagename)

	

	
flare_finder()

	Provide input visibility, find out the flare peak time, flare duration, and
suitable time ranges for performing self-calibration

	
produce_required_inputs_from_flare_time(num_spws)

	

	
find_previous_image(spw)

	

	
gen_blank_cal(spw)

	

	
find_phasecenter()

	The purpose of this module is to find a new phasecenter at the flare location for imaging
:rtype: Updates self.phasecenter (in J2000 RA and DEC) to be the flare location

	
do_selfcal(slfcalms, sp, spwran, uvrange='', cell_val='2arcsec', imsize=2048, ref_image='', make_shifted_mask=False, combine_spws=False)

	

	
calling_do_selfcal(slfcalms, s, uvrange='', cell_val='2arcsec')

	

	
slfcal_init()

	

	
flare_ms_calib(value)

	

	
slfcal_pipeline(doselfcal=True, doimaging=False)

	

	
rename_move_files(flare_id, fitsdir_web_tp, movdir_web_tp, dorename_fits=False, domove_fits=False, dorename_mov=False, domove_mov=False, dormworkdir=False, docopy=False)

	Rename EOVSA FITS files and move them to the web folder.
‘eovsa.lev1_mbd_12s.2022-11-12T180524Z.image.fits’
‘eovsa.lev1_mbd_12s.flare_id_20221112180524.mp4’

suncasa.eovsa.eovsa_pipeline

Module Contents

Classes

	Path_config

	

Functions

	getspwfreq(vis)

	
	param vis:

	

	trange2ms([trange, doimport, verbose, doscaling, ...])

	This finds all solar UDBms files within a timerange; If the UDBms file does not exist

	calib_pipeline(trange[, workdir, doimport, overwrite, ...])

	trange: can be 1) a single Time() object: use the entire day

	mk_qlook_image(trange[, doimport, docalib, ncpu, ...])

	trange: can be 1) a single Time() object: use the entire day

	plt_qlook_image(imres[, figdir, verbose, synoptic])

	

	qlook_image_pipeline(date[, twidth, ncpu, doimport, ...])

	date: date string or Time object. e.g., '2017-07-15' or Time('2017-07-15')

	pipeline([year, month, day, ndays, clearcache, ...])

	Main pipeline for importing and calibrating EOVSA visibility data.

Attributes

	tasks

	

	split

	

	tclean

	

	gencal

	

	clearcal

	

	applycal

	

	gaincal

	

	delmod

	

	tools

	

	qatool

	

	iatool

	

	mstool

	

	tbtool

	

	ms

	

	tb

	

	hostname

	

	pathconfig

	

	udbmsdir

	

	udbmsscldir

	

	udbmsslfcaleddir

	

	udbdir

	

	caltbdir

	

	slfcaltbdir

	

	qlookfitsdir

	

	qlookfigdir

	

	synopticfigdir

	

	parser

	

	
suncasa.eovsa.eovsa_pipeline.tasks

	

	
suncasa.eovsa.eovsa_pipeline.split

	

	
suncasa.eovsa.eovsa_pipeline.tclean

	

	
suncasa.eovsa.eovsa_pipeline.gencal

	

	
suncasa.eovsa.eovsa_pipeline.clearcal

	

	
suncasa.eovsa.eovsa_pipeline.applycal

	

	
suncasa.eovsa.eovsa_pipeline.gaincal

	

	
suncasa.eovsa.eovsa_pipeline.delmod

	

	
suncasa.eovsa.eovsa_pipeline.tools

	

	
suncasa.eovsa.eovsa_pipeline.qatool

	

	
suncasa.eovsa.eovsa_pipeline.iatool

	

	
suncasa.eovsa.eovsa_pipeline.mstool

	

	
suncasa.eovsa.eovsa_pipeline.tbtool

	

	
suncasa.eovsa.eovsa_pipeline.ms

	

	
suncasa.eovsa.eovsa_pipeline.tb

	

	
suncasa.eovsa.eovsa_pipeline.hostname

	

	
class suncasa.eovsa.eovsa_pipeline.Path_config

	
	
_get_env_var(env_var, default_path)

	

	
suncasa.eovsa.eovsa_pipeline.pathconfig

	

	
suncasa.eovsa.eovsa_pipeline.udbmsdir

	

	
suncasa.eovsa.eovsa_pipeline.udbmsscldir

	

	
suncasa.eovsa.eovsa_pipeline.udbmsslfcaleddir

	

	
suncasa.eovsa.eovsa_pipeline.udbdir

	

	
suncasa.eovsa.eovsa_pipeline.caltbdir

	

	
suncasa.eovsa.eovsa_pipeline.slfcaltbdir

	

	
suncasa.eovsa.eovsa_pipeline.qlookfitsdir

	

	
suncasa.eovsa.eovsa_pipeline.qlookfigdir

	

	
suncasa.eovsa.eovsa_pipeline.synopticfigdir

	

	
suncasa.eovsa.eovsa_pipeline.getspwfreq(vis)

	
	Parameters:

	vis –

	Returns:

	mid frequencies in GHz of each spw in the vis

	
suncasa.eovsa.eovsa_pipeline.trange2ms(trange=None, doimport=False, verbose=False, doscaling=False, overwrite=True)

	This finds all solar UDBms files within a timerange; If the UDBms file does not exist
in EOVSAUDBMSSCL, create one by calling importeovsa
Required inputs:
trange - can be 1) a single string or Time() object in UTC: use the entire day, e.g., ‘2017-08-01’ or Time(‘2017-08-01’)

if just a date, find all scans withing the same date in local time.
if a complete time stamp, find the local date first (which may be different from that provided,

and return all scans within that day

	a range of Time(), e.g., Time([‘2017-08-01 00:00’,’2017-08-01 23:00’])

	None – use current date Time.now()

	doimport - Boolean. If true, call importeovsa to import UDB files that are missing from
	those found in the directory specified in EOVSAUDBMSSCL. Otherwise, return
a list of ms files it has found.

doscaling - Boolean. If true, scale cross-correlation amplitudes by using auto-correlations
verbose - Boolean. If true, return more information

	
suncasa.eovsa.eovsa_pipeline.calib_pipeline(trange, workdir=None, doimport=False, overwrite=False, clearcache=False, verbose=False, pols='XX', version='v1.0', ncpu='auto')

	
	trange: can be 1) a single Time() object: use the entire day
	
	a range of Time(), e.g., Time([‘2017-08-01 00:00’,’2017-08-01 23:00’])

	a single or a list of UDBms file(s)

	None – use current date Time.now()

	
suncasa.eovsa.eovsa_pipeline.mk_qlook_image(trange, doimport=False, docalib=False, ncpu=10, twidth=12, stokes=None, antenna='0~12', lowcutoff_freq=3.7, imagedir=None, spws=['1~5', '6~10', '11~15', '16~25'], toTb=True, overwrite=True, doslfcal=False, verbose=False)

	
	trange: can be 1) a single Time() object: use the entire day
	
	a range of Time(), e.g., Time([‘2017-08-01 00:00’,’2017-08-01 23:00’])

	a single or a list of UDBms file(s)

	None – use current date Time.now()

	
suncasa.eovsa.eovsa_pipeline.plt_qlook_image(imres, figdir=None, verbose=True, synoptic=False)

	

	
suncasa.eovsa.eovsa_pipeline.qlook_image_pipeline(date, twidth=10, ncpu=15, doimport=False, docalib=False, synoptic=False, overwrite=True)

	date: date string or Time object. e.g., ‘2017-07-15’ or Time(‘2017-07-15’)

	
suncasa.eovsa.eovsa_pipeline.pipeline(year=None, month=None, day=None, ndays=1, clearcache=True, overwrite=False, doimport=True, pols='XX', version='v1.0', ncpu='auto', debugging=False)

	Main pipeline for importing and calibrating EOVSA visibility data.

	Name:
	eovsa_pipeline — main pipeline for importing and calibrating EOVSA visibility data.

	Synopsis:
	eovsa_pipeline.py [options]… [DATE_IN_YY_MM_DD]

	Description:
	Import and calibrate EOVSA visibility data of the date specified
by DATE_IN_YY_MM_DD (or from ndays before the DATE_IN_YY_MM_DD if option –ndays/-n is provided).
If DATE_IN_YY_MM_DD is omitted, it will be set to 2 days before now by default.
There are no mandatory arguments in this command.

	Parameters:

	
	year (int, optional) – The year for which data should be processed, defaults to None.

	month (int, optional) – The month for which data should be processed, defaults to None.

	day (int, optional) – The day for which data should be processed, defaults to None.

	ndays (int, optional) – Number of days before the specified date to include in the processing, defaults to 1.

	clearcache (bool, optional) – Whether to clear cache after processing, defaults to True.

	overwrite (bool, optional) – Whether to overwrite existing files, defaults to True.

	doimport (bool, optional) – Whether to perform the import step, defaults to True.

	pols (str, optional) – Polarizations to process, can be ‘XX’ or ‘XXYY’, defaults to ‘XX’.

	version (str, optional) – Version of the pipeline to use, choices are ‘v1.0’ or ‘v2.0’, defaults to ‘v1.0’.

	ncpu (str, optional) – Number of CPUs to use for processing, defaults to ‘auto’.

	debugging (bool, optional) – Whether to run the pipeline in debugging mode, defaults to False.

	Raises:

	ValueError – Raises an exception if the date parameters are out of the valid Gregorian calendar range.

Example:

To process data for November 24th, 2021 using version 2.0 of the pipeline, with all options enabled:

>>> python eovsa_pipeline.py --date 2021-11-24T20:00 --clearcache --overwrite --doimport --pols XXYY --version v2.0 --ndays 2

If you want to see the help message, you can run:

>>> python eovsa_pipeline.py -h

	
suncasa.eovsa.eovsa_pipeline.parser

	

suncasa.eovsa.eovsa_pipelineAlldayFits

Module Contents

	
suncasa.eovsa.eovsa_pipelineAlldayFits.argv

	

suncasa.eovsa.eovsa_pltQlookImage

Module Contents

Functions

	clearImage()

	

	pltEmptyImage2([dpis_dict])

	

	pltEmptyImage(datestr, spws, vmaxs, vmins[, dpis_dict])

	

	pltEovsaQlookImage(datestr, spws, vmaxs, vmins, dpis_dict)

	

	pltSdoQlookImage(datestr, dpis_dict[, fig, ax, ...])

	

	pltBbsoQlookImage(datestr, dpis_dict[, fig, ax, ...])

	

	main([year, month, day, ndays, clearcache, ...])

	

Attributes

	imgfitsdir

	

	imgfitstmpdir

	

	pltfigdir

	

	year

	

	
suncasa.eovsa.eovsa_pltQlookImage.imgfitsdir = '/data1/eovsa/fits/synoptic/'

	

	
suncasa.eovsa.eovsa_pltQlookImage.imgfitstmpdir = '/data1/workdir/fitstmp/'

	

	
suncasa.eovsa.eovsa_pltQlookImage.pltfigdir = '/common/webplots/SynopticImg/eovsamedia/eovsa-browser/'

	

	
suncasa.eovsa.eovsa_pltQlookImage.clearImage()

	

	
suncasa.eovsa.eovsa_pltQlookImage.pltEmptyImage2(dpis_dict={'t': 32.0})

	

	
suncasa.eovsa.eovsa_pltQlookImage.pltEmptyImage(datestr, spws, vmaxs, vmins, dpis_dict={'t': 32.0})

	

	
suncasa.eovsa.eovsa_pltQlookImage.pltEovsaQlookImage(datestr, spws, vmaxs, vmins, dpis_dict, fig=None, ax=None, overwrite=False, verbose=False)

	

	
suncasa.eovsa.eovsa_pltQlookImage.pltSdoQlookImage(datestr, dpis_dict, fig=None, ax=None, overwrite=False, verbose=False, clearcache=False)

	

	
suncasa.eovsa.eovsa_pltQlookImage.pltBbsoQlookImage(datestr, dpis_dict, fig=None, ax=None, overwrite=False, verbose=False, clearcache=False)

	

	
suncasa.eovsa.eovsa_pltQlookImage.main(year=None, month=None, day=None, ndays=1, clearcache=False, ovwrite_eovsa=False, ovwrite_sdo=False, ovwrite_bbso=False, show_warning=False)

	

	
suncasa.eovsa.eovsa_pltQlookImage.year

	

suncasa.eovsa.eovsa_pltQlookMovie

Module Contents

Functions

	clearImage()

	

	pltEovsaQlookImageSeries(timobjs, spws, vmaxs, vmins, ...)

	

	main(year, month[, day, ndays, bd, show_warning])

	By default, the subroutine create EOVSA monthly movie

Attributes

	imgfitsdir

	

	imgfitstmpdir

	

	pltfigdir

	

	year

	

	
suncasa.eovsa.eovsa_pltQlookMovie.imgfitsdir = '/data1/eovsa/fits/synoptic/'

	

	
suncasa.eovsa.eovsa_pltQlookMovie.imgfitstmpdir = '/data1/workdir/fitstmp/'

	

	
suncasa.eovsa.eovsa_pltQlookMovie.pltfigdir = '/common/webplots/SynopticImg/eovsamedia/eovsa-browser/'

	

	
suncasa.eovsa.eovsa_pltQlookMovie.clearImage()

	

	
suncasa.eovsa.eovsa_pltQlookMovie.pltEovsaQlookImageSeries(timobjs, spws, vmaxs, vmins, aiawave, bd, fig=None, axs=None, imgoutdir=None, overwrite=False, verbose=False)

	

	
suncasa.eovsa.eovsa_pltQlookMovie.main(year, month, day=None, ndays=10, bd=3, show_warning=False)

	By default, the subroutine create EOVSA monthly movie

	
suncasa.eovsa.eovsa_pltQlookMovie.year

	

suncasa.eovsa.eovsa_readfits

Module Contents

Functions

	readfits(eofile)

	read eovsa image fits, adjust the date-obs to the mid time.

	get_all_coordinate_from_map(sunmap)

	

	
suncasa.eovsa.eovsa_readfits.readfits(eofile)

	read eovsa image fits, adjust the date-obs to the mid time.
:param eofile:
:return:

	
suncasa.eovsa.eovsa_readfits.get_all_coordinate_from_map(sunmap)

	

suncasa.eovsa.eovsa_scaling

Module Contents

Functions

	mk_udbms([trange, outpath, projid, srcid, doscaling])

	usage: outfiles = mk_udbms(Time('2017-07-02 15:00'))

	
suncasa.eovsa.eovsa_scaling.mk_udbms(trange=None, outpath=None, projid='NormalObserving', srcid='Sun', doscaling=True)

	
usage: outfiles = mk_udbms(Time(‘2017-07-02 15:00’))

	Parameters:

	
	trange –

	outpath –

	projid –

	srcid –

	doscaling –

	Returns:

	

suncasa.eovsa.eovsa_synoptic_imaging_pipeline

Module Contents

Classes

	FrequencySetup

	Manages frequency setup based on observation date for radio astronomy imaging.

Functions

	log_print(level, message)

	

	is_factor_of_60_minutes(tdt)

	Check if tdt is a factor of 60 minutes or a harmonic of 60 minutes.

	generate_trange_series(tbg, ted, tdt[, snap_to_full_hour])

	Generate a list of time ranges using pandas.date_range, with options to snap the ranges to full hours and

	trange2timerange(trange)

	Convert a time range tuple in datetime format to a string representation.

	rotateimage(data, xc_centre, yc_centre, p_angle)

	Rotate an image around a specified point (xc_centre, yc_centre) by a given angle.

	sunpymap2helioimage(sunmap, out_image)

	Rotate a SunPy map from helioprojective to RA-DEC coordinates and write it to a CASA image format.

	solar_diff_rot_image(in_map, newtime, out_image[, showplt])

	Reproject a SunPy map to account for solar differential rotation to a new observation time.

	get_bmsize(cfreq[, refbmsize, reffreq, minbmsize])

	Calculate the beam size at given frequencies based on a reference beam size at a reference frequency.

	calc_diskmodel(slashdate, nbands, freq, defaultfreq)

	

	writediskxml(dsize, fdens, freq[, xmlfile])

	

	readdiskxml(xmlfile)

	

	gaussian2d(x, y, amplitude, x0, y0, sigma_x, sigma_y, ...)

	

	image_adddisk(eofile, diskinfo[, edgeconvmode, ...])

	
	param eofile:

	input image FITS file

	mk_diskmodel([outname, direction, reffreq, flux, ...])

	Create a blank solar disk model image (or optionally a data cube)

	insertdiskmodel(vis[, sizescale, fdens, dsize, ...])

	

	uvrange_uplim_from_freq(x, x0, x1, y0, y1)

	Calculate the upper limit of the UV range from frequency using linear interpolation.

	disk_slfcal(msfile, tbg, ted, disk_params[, workdir, ...])

	Perform disk self-calibration on measurement set data.

	shift_corr(mmsfiles, trange_series, spws, imagemodel, ...)

	Corrects smearing effects in solar observation data by aligning them with a model image.

	split_mms(msname, timerange_series[, spw, workdir, ...])

	Splits a measurement set into multiple subsets based on specified time ranges.

	all_paths_exist(paths)

	

	ant_trange(vis)

	Figure out nominal times for tracking of old EOVSA antennas, and return time

	format_spw(spw)

	Formats the spectral window (spw) string for file naming, ensuring start and end values are separated by a dash and zero-padded to two digits.

	rm_imname_extensions(imname[, keep_ext, verbose])

	Remove directories and files that match the base image name (imname) with specific extensions.

	check_image_zeros(imname)

	Check if the image contains non-zero data.

	format_param(param)

	

	run_tclean_automasking(vis, sp, trange, uvrange, ...)

	Wrapper function for the tclean task in CASA.

	fd_images(vis[, cleanup, image_marker, timerange, ...])

	Generates full-disk images, optionally cleans up interim images, and performs image registration.

	merge_FITSfiles(fitsfilesin, outfits[, ...])

	Merges multiple FITS files into a single output file by calculating the mean of stacked data.

	process_time_block(tidx_ted_tbg, msfile_in, msname, ...)

	

	process_imaging_timerange(tbg_ted, msfile_in, spws, ...)

	

	pipeline_run(vis[, outputvis, workdir, slfcaltbdir, ...])

	Executes the EOVSA data processing pipeline for solar observation data.

Attributes

	hostname

	

	is_on_server

	

	tasks

	

	gaincal

	

	applycal

	

	clearcal

	

	delmod

	

	ft

	

	uvsub

	

	split

	

	concat

	

	flagmanager

	

	flagdata

	

	tclean

	

	hanningsmooth

	

	imhead

	

	tools

	

	qatool

	

	iatool

	

	cltool

	

	mstool

	

	tbtool

	

	qa

	

	ia

	

	ms

	

	tb

	

	description

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.hostname

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.is_on_server = True

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.tasks

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.gaincal

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.applycal

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.clearcal

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.delmod

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.ft

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.uvsub

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.split

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.concat

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.flagmanager

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.flagdata

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.tclean

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.hanningsmooth

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.imhead

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.tools

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.qatool

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.iatool

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.cltool

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.mstool

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.tbtool

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.qa

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.ia

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.ms

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.tb

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.log_print(level, message)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.is_factor_of_60_minutes(tdt)

	Check if tdt is a factor of 60 minutes or a harmonic of 60 minutes.

	Parameters:

	tdt (timedelta) – Time duration to check.

	Returns:

	True if tdt is a factor or harmonic of 60 minutes, False otherwise.

	Return type:

	bool

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.generate_trange_series(tbg, ted, tdt, snap_to_full_hour=False)

	Generate a list of time ranges using pandas.date_range, with options to snap the ranges to full hours and
adjust the first and last time range based on specific conditions.

	Parameters:

	
	tbg (str or datetime-like) – The start time.

	ted (str or datetime-like) – The end time.

	tdt (timedelta) – The duration of each time range.

	snap_to_full_hour (bool) – Whether to snap the time series to full hours, defaults to False.

	Returns:

	A list of tuples, each representing the start and end time of a range.

	Return type:

	list of tuple

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.trange2timerange(trange)

	Convert a time range tuple in datetime format to a string representation.

	Parameters:

	trange (tuple) – A tuple containing start and end times as datetime objects.

	Returns:

	A string representation of the time range.

	Return type:

	str

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.rotateimage(data, xc_centre, yc_centre, p_angle)

	Rotate an image around a specified point (xc_centre, yc_centre) by a given angle.

	Parameters:

	
	data (numpy.ndarray) – The image data.

	xc_centre (int) – The x-coordinate of the rotation center.

	yc_centre (int) – The y-coordinate of the rotation center.

	p_angle (float) – The rotation angle in degrees.

	Returns:

	The rotated image.

	Return type:

	numpy.ndarray

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.sunpymap2helioimage(sunmap, out_image)

	Rotate a SunPy map from helioprojective to RA-DEC coordinates and write it to a CASA image format.

	Parameters:

	
	sunmap (sunpy.map.Map) – The input SunPy Map object to be rotated.

	out_image (str) – The filepath for the output CASA image.

	Returns:

	The filepath to the output CASA image format.

	Return type:

	str

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.solar_diff_rot_image(in_map, newtime, out_image, showplt=False)

	Reproject a SunPy map to account for solar differential rotation to a new observation time.

	Parameters:

	
	in_map (sunpy.map.Map) – The input SunPy Map object to be reprojected.

	newtime (astropy.time.Time) – The new time to which the map is reprojected.

	out_image (str) – The path for the output image file in CASA format.

	showplt (bool) – Boolean flag to show plots of the original and reprojected maps, defaults to False.

	Returns:

	The path to the output CASA image format.

	Return type:

	str

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.get_bmsize(cfreq, refbmsize=70.0, reffreq=1.0, minbmsize=4.0)

	Calculate the beam size at given frequencies based on a reference beam size at a reference frequency.
This function supports both single frequency values and lists of frequencies.

	Parameters:

	
	cfreq (float or list) – Input frequencies in GHz, can be a float or a list of floats.

	refbmsize (float, optional) – Reference beam size in arcsec, defaults to 70.0.

	reffreq (float, optional) – Reference frequency in GHz, defaults to 1.0.

	minbmsize (float, optional) – Minimum beam size in arcsec, defaults to 4.0.

	Returns:

	Beam size at the given frequencies, same type as input (float or numpy array).

	Return type:

	float or numpy.ndarray

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.calc_diskmodel(slashdate, nbands, freq, defaultfreq)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.writediskxml(dsize, fdens, freq, xmlfile='SOLDISK.xml')

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.readdiskxml(xmlfile)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.gaussian2d(x, y, amplitude, x0, y0, sigma_x, sigma_y, theta)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.image_adddisk(eofile, diskinfo, edgeconvmode='frommergeddisk', caltbonly=False, bmfactor=2.0, overwrite=True)

	
	Parameters:

	
	eofile – input image FITS file

	diskinfo – disk information file

	edgeconvmode – edge convolve mode, ‘frommergeddisk’ or ‘frombeam’

	caltbonly – calculate the Tb of the disk and return the value

	bmfactor – factor to multiply the beam major and minor axes to get the sigma of the Gaussian kernel

	overwrite – whether to overwrite the output fits file if it already exists

	Returns:

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.mk_diskmodel(outname='disk', direction='J2000 10h00m00.0s 20d00m00.0s', reffreq='2.8GHz', flux=660000.0, eqradius='16.166arcmin', polradius='16.166arcmin', pangle='21.1deg', overwrite=True)

	Create a blank solar disk model image (or optionally a data cube)
outname String to use for part of the image and fits file names (default ‘disk’)
direction String specifying the position of the Sun in RA and Dec. Default

means use the standard string “J2000 10h00m00.0s 20d00m00.0s”

	reffreq The reference frequency to use for the disk model (the frequency at which
	the flux level applies). Default is ‘2.8GHz’.

flux The flux density, in Jy, for the entire disk. Default is 66 sfu.
eqradius The equatorial radius of the disk. Default is

16 arcmin + 10” (for typical extension of the radio limb)

	polradius The polar radius of the disk. Default is
	16 arcmin + 10” (for typical extension of the radio limb)

	pangle The solar P-angle (geographic position of the N-pole of the Sun) in
	degrees E of N. This only matters if eqradius != polradius

	index The spectral index to use at other frequencies. Default None means
	use a constant flux density for all frequencies.

	cell The cell size (assumed square) to use for the image. The image size
	is determined from a standard radius of 960” for the Sun, divided by
cell size, increased to nearest power of 512 pixels. The default is ‘2.0arcsec’,
which results in an image size of 1024 x 1024.

	Note that the frequency increment used is ‘325MHz’, which is the width of EOVSA bands
	(not the width of individual science channels)

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.insertdiskmodel(vis, sizescale=1.0, fdens=None, dsize=None, xmlfile='SOLDISK.xml', writediskinfoonly=False, active=False, overwrite=False)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.uvrange_uplim_from_freq(x, x0, x1, y0, y1)

	Calculate the upper limit of the UV range from frequency using linear interpolation.

	Parameters:

	
	x (float) – The frequency for which the UV range upper limit is calculated.

	x0 (float) – The start frequency of the interpolation range.

	x1 (float) – The end frequency of the interpolation range.

	y0 (float) – The UV range upper limit at the start frequency.

	y1 (float) – The UV range upper limit at the end frequency.

	Returns:

	The calculated UV range upper limit for the given frequency.

	Return type:

	float

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.disk_slfcal(msfile, tbg, ted, disk_params, workdir='./', overwrite=True, iterbands=False)

	Perform disk self-calibration on measurement set data.

	Parameters:

	
	msfile (str) – The measurement set file to be calibrated.

	tbg (datetime) – The beginning time of the calibration range.

	ted (datetime) – The end time of the calibration range.

	disk_params (dict) – A dictionary containing disk model parameters.

	iterbands (bool) – Boolean flag to run gaincal iterating over frequency bands, defaults to False. iterbands = True is only useful when uvrange_uplim is used, which is currently not implemented.

	Returns:

	The filepath of the self-calibrated measurement set.

	Return type:

	str

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.shift_corr(mmsfiles, trange_series, spws, imagemodel, imagemodel_fits, reftime_master, workdir='./', pols='XX', overwrite=False, do_featureslfcal=False, do_diskslfcal=True, disk_params={}, do_sbdcal=True, verbose=True)

	Corrects smearing effects in solar observation data by aligning them with a model image.

	Parameters:

	
	mmsfiles (list of str) – Paths to the measurement set files to be corrected.

	trange_series (list of tuple) – Each tuple contains start and end times for the measurement set files.

	spws (list of string) – Spectral window indices to be considered.

	imagemodel (str) – Path to the model image in CASA measurement set format.

	imagemodel_fits (str) – Path to the model image in FITS format.

	reftime_master (astropy.time.Time) – Reference time for the rotation of the model image.

	workdir (str) – Working directory for output files, defaults to ‘./’.

	do_featureslfcal (bool) – Boolean flag to perform feature self-calibration, defaults to False.

	pols (str) – Polarization types to be considered, defaults to ‘XX’.

	overwrite (bool) – Boolean flag to overwrite existing files, defaults to False.

	do_diskslfcal (bool) – Boolean flag to perform disk self-calibration, defaults to True.

	disk_params (dict) – Dictionary containing parameters for disk self-calibration.

	do_sbdcal (bool) – Boolean flag to perform single-band delay calibration, defaults to True.

	verbose (bool) – Boolean flag to enable verbose output, defaults to True.

	Returns:

	Paths to the corrected measurement set files.

	Return type:

	list of str

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.split_mms(msname, timerange_series, spw='', workdir='./', overwrite=False, verbose=True)

	Splits a measurement set into multiple subsets based on specified time ranges.

	Parameters:

	
	msname (str) – Path to the original measurement set.

	timerange_series (list of tuple) – Time ranges for each split, with each tuple containing start and end datetime objects.

	spw (str) – Spectral window specification for the splitting process, defaults to ‘’.

	workdir (str) – Target directory for saving the split measurement sets, defaults to ‘./’.

	overwrite (bool) – Boolean flag to overwrite existing files, defaults to False.

	verbose (bool) – Boolean flag to enable verbose output, defaults to True.

	Returns:

	Paths to the created split measurement sets, corresponding to each specified time range.

	Return type:

	list of str

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.all_paths_exist(paths)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.ant_trange(vis)

	Figure out nominal times for tracking of old EOVSA antennas, and return time
range in CASA format

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.format_spw(spw)

	Formats the spectral window (spw) string for file naming, ensuring start and end values are separated by a dash and zero-padded to two digits.

	Parameters:

	spw (str) – The spectral window in the format “start~end”, where start and end are integers.

	Returns:

	A formatted string with start and end values zero-padded to two digits, separated by a dash.

	Return type:

	str

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.rm_imname_extensions(imname, keep_ext=[], verbose=False)

	Remove directories and files that match the base image name (imname) with specific extensions.

	Parameters:

	
	imname (str) – The base name of images/directories to remove specific extensions for.

	keep_ext (list) – A list of extensions to keep. Default is an empty list.

	verbose (bool) – If True, print detailed information about the removal process. Default is False.

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.check_image_zeros(imname)

	Check if the image contains non-zero data.

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.format_param(param)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.run_tclean_automasking(vis, sp, trange, uvrange, datacolumn, imname, imsize, cell, stokes, scales, niter, reffreq, pbcor, savemodel, usemask, restoringbeam, sidelobethreshold, noisethreshold, lownoisethreshold, minbeamfrac, negativethreshold, growiterations)

	Wrapper function for the tclean task in CASA.

	Parameters:

	
	vis (str) – Name of the visibility data set to be imaged.

	sp (str) – Spectral window selection.

	trange (str) – Time range selection.

	uvrange (str) – UV range selection.

	datacolumn (str) – Specifies which data column to use.

	imname (str) – Name of the output image.

	imsize (list) – Image size in pixels.

	cell (list) – Cell size specification.

	stokes (str) – Stokes parameters to image.

	scales (list) – Scales for multi-scale clean.

	niter (int) – Maximum number of iterations.

	reffreq (float) – Reference frequency for the image.

	pbcor (bool) – Specifies whether to perform primary beam correction.

	savemodel (str) – Specifies whether to save the model.

	usemask (bool) – Specifies whether to use auto-masking.

	restoringbeam (list) – Restoring beam parameters.

	sidelobethreshold (float) – Side lobe threshold for auto-masking.

	noisethreshold (float) – Noise threshold for auto-masking.

	lownoisethreshold (float) – Low noise threshold for auto-masking.

	negativethreshold (float) – Negative threshold for auto-masking.

	growiterations (int) – Number of grow iterations for auto-masking.

	
class suncasa.eovsa.eovsa_synoptic_imaging_pipeline.FrequencySetup(tim=None)

	Manages frequency setup based on observation date for radio astronomy imaging.

This class is initialized with an observation time and calculates
essential frequency parameters such as effective observing frequencies (eofreq)
and spectral windows (spws) based on the observation date. It provides methods
to calculate reference frequency and bandwidth for given spectral windows.

	Parameters:

	tim (astropy.time.Time) – Observation time used to determine the frequency setup.

Attributes:
- tim (astropy.time.Time): The observation time.
- spw2band (numpy.ndarray): An array mapping spectral window indices to band numbers.
- bandwidth (float): The bandwidth in GHz.
- defaultfreq (numpy.ndarray): The default effective observing frequencies in GHz.
- nbands (int): Number of bands.
- eofreq (numpy.ndarray): Effective observing frequencies based on the observation time.
- spws (list of str): Spectral window selections based on the observation time.

	Example:

	

>>> from astropy.time import Time
>>> tim = Time('2022-01-01T00:00:00', format='isot')
>>> freq_setup = FrequencySetup(tim)
>>> crval, cdelt = freq_setup.get_reffreq_and_cdelt('5~10')
>>> print(crval, cdelt)

	
get_reffreq_and_cdelt(spw)

	Calculates the reference frequency (CRVAL) and the frequency delta (CDELT)
for a given spectral window range.

This method takes a spectral window selection and computes the mean of the effective
observing frequencies (eofreq) within that range as the reference frequency. It also
calculates the bandwidth covered by the spectral window range as the frequency delta.

	Parameters:

	spw (str) – Spectral window selection, specified as a range ‘start~end’ or a single value.

	Returns:

	A tuple containing the reference frequency and frequency delta, both in GHz.

	Return type:

	(str, str)

	Example:

	

>>> crval, cdelt = freq_setup.get_reffreq_and_cdelt('5~10')
>>> print(crval, cdelt)

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.fd_images(vis, cleanup=False, image_marker='', timerange='', niter=None, cell=['2.5arcsec'], imsize=[1024], spws=['0~1', '2~4', '5~10', '11~20', '21~30', '31~43'], imgoutdir='./', bright=None, stokes='XX', uvrange='', toTb=True, pbcor=True, datacolumn='data', savemodel='none', usemask='auto-multithresh', overwrite=False, compress=False, dryrun=False)

	Generates full-disk images, optionally cleans up interim images, and performs image registration.

This function creates full-disk solar images based on visibility data, performs an optional cleanup of interim images,
and aligns the resulting images to a standard solar disk model. It supports dynamic image size, cell size, and spectral
window (SPW) selection. The function also handles the creation of FITS files from the generated images, ensuring the reference
frequency in the FITS header is calculated as the middle of the selected frequency range.

	Parameters:

	
	vis (str) – Path to the visibility data.

	cleanup (bool) – If True, deletes interim images after processing. Default is False.

	image_marker (str) – Additional identifier for the image name. Default is ‘’.

	timerange (str) – Range of time to select from data. Default is ‘’.

	niter (int) – Number of iterations for the cleaning algorithm. If None, defaults to 5000.

	cell (list) – Size of the image cell, e.g., [‘2.5arcsec’].

	imsize (list) – Dimensions of the output image, e.g., [1024].

	spws (list) – Spectral windows to process, specified as ranges, e.g., [‘0~1’, ‘2~5’].

	imgoutdir (str) – Output directory for the resulting images and FITS files. Defaults to ‘./’.

	bright (list) – Flags to indicate brightness processing per SPW. Defaults to all True.

	stokes (str) – Stokes parameter to use. Default is “XX”.

	uvrange (str) – UV range to select from data. Default is ‘’.

	toTb (bool) – If True, converts image to temperature scale. Default is True.

	pbcor (bool) – If True, applies primary beam correction. Default is True.

	datacolumn (str) – Data column to use from the visibility data. Default is ‘data’.

	savemodel (str) – Options for saving the model visibilities. Choices are ‘none’, ‘virtual’, and ‘modelcolumn’. Default is ‘none’.

	overwrite (bool) – If True, overwrites existing FITS files. Default is False.

	dryrun (bool) – If True, only returns the paths to the generated images. No actual image processing is performed. Default is False.

	Returns:

	A tuple containing two lists: paths to the generated FITS files and paths to the CASA image files.

	Return type:

	(list of str, list of str)

Note

1. The reference frequency in the FITS header is calculated as the middle of the selected frequency range. This ensures
accurate representation of the frequency information in the generated images.
2. The function internally manages directory creation for images, applies multiscale cleaning based on initial beam size
determination, and uses default or specified scales for image cleaning. Errors in beam size determination lead to fallback
on default scales. The function finally aligns and converts the images to FITS format, with options for temperature scale
conversion and phase center alignment.

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.merge_FITSfiles(fitsfilesin, outfits, exptime_weight=False, suppress_ondiskres=False, suppress_thrshd=0.3, overwrite=True)

	Merges multiple FITS files into a single output file by calculating the mean of stacked data.

This function stacks the data from a list of input FITS files along a new axis, optionally applying exposure time
weighting and suppression of on-disk residuals based on a threshold relative to the disk brightness temperature.
The mean of the stacked data is then written to a specified output FITS file.

	Parameters:

	
	fitsfilesin (list of str) – List of file paths to the input FITS files to be merged.

	outfits (str) – File path for the output FITS file where the merged data will be saved.

	exptime_weight (bool, optional) – If True, the exposure time is used as a weight for calculating the mean of the stacked data. Defaults to False.

	suppress_ondiskres (bool, optional) – If True, suppresses on-disk residuals based on suppress_thrshd. Defaults to False.

	suppress_thrshd (float, optional) – Threshold for suppression of on-disk residuals, expressed as a fraction of the disk brightness temperature.
May suppress weak but real emission. Defaults to 0.3.

	overwrite (bool, optional) – If True, the output file is overwritten if it already exists. Defaults to True.

	Raises:

	ValueError – If any of the input FITS files cannot be read.

	Return type:

	None

Notes

The suppression of on-disk residuals is achieved by applying a sigmoid function to pixels within a specified range
of the disk brightness temperature, effectively reducing the contribution of residuals while preserving the overall
structure.

Examples

Merge three FITS files without exposure time weighting and with on-disk residual suppression:

>>> merge_FITSfiles(['sun_01.fits', 'sun_02.fits', 'sun_03.fits'], 'sun_merged.fits',
... exptime_weight=False, suppress_ondiskres=True, suppress_thrshd=0.3, overwrite=True)

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.process_time_block(tidx_ted_tbg, msfile_in, msname, subdir, total_blocks, tdt, tdtstr, spws, niter_init, reftime_master, do_diskslfcal, disk_params, pols='XX', do_sbdcal=False, overwrite=False)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.process_imaging_timerange(tbg_ted, msfile_in, spws, subdir, overwrite)

	

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.pipeline_run(vis, outputvis='', workdir=None, slfcaltbdir=None, imgoutdir=None, figoutdir=None, clearcache=False, pols='XX', mergeFITSonly=False, verbose=True, do_diskslfcal=True, overwrite=False, niter_init=200, ncpu='auto', tr_series_imaging=None, spws_imaging=None, hanning=False, do_sbdcal=False)

	Executes the EOVSA data processing pipeline for solar observation data.

	Parameters:

	
	vis (str) – Path to the input measurement set (MS) data.

	outputvis (str, optional) – Output path for the processed MS, defaults to an empty string.

	workdir (str, optional) – Working directory for intermediate data, defaults to None which sets it to ‘/data1/workdir’.

	slfcaltbdir (str, optional) – Directory for storing calibration tables, defaults to None.

	imgoutdir (str, optional) – Output directory for image files, defaults to None.

	figoutdir (str, optional) – Output directory for figures, defaults to None.

	clearcache (bool, optional) – If True, clears the cache after processing, defaults to False.

	pols (str, optional) – Polarization types to process, defaults to ‘XX’.

	mergeFITSonly (bool, optional) – If True, skips processing and only merges FITS files, defaults to False.

	verbose (bool, optional) – Enables verbose output during processing, defaults to True.

	do_diskslfcal (bool, optional) – If True, performs disk self-calibration, defaults to True.

	overwrite (bool, optional) – If True, overwrites existing files, defaults to False.

	niter_init (int, optional) – Initial number of iterations for imaging, defaults to 200.

	ncpu (str or int, optional) – Specifies the number of CPUs for parallel processing, defaults to ‘auto’.

	tr_series_imaging (list of tuple, optional) – Time ranges for imaging, defaults to None.

	spws_imaging (list of str, optional) – Spectral windows selected for imaging, defaults to None.

	hanning (bool, optional) – If True, applies Hanning smoothing to the data, defaults to False.

	do_sbdcal (bool) – Boolean flag to perform single-band delay calibration, defaults to False.

	Returns:

	Path to the processed visibility data.

	Return type:

	str

	Example:

	

if you want to specify the spectral windows for imaging
>>> spws_imaging = [‘5~10’, ‘11~20’, ‘21~30’]
if you want to specify the time range for imaging
>>> from datetime import datetime, timedelta
>>> from suncasa.eovsa import eovsa_synoptic_imaging_pipeline as esip
>>> tbg_imaging = datetime(2024, 4, 8, 16, 58, 0)
>>> ted_imaging = datetime(2024, 4, 8, 19, 00, 0)
>>> tdt_imaging = timedelta(minutes=2)
>>> tr_series_imaging = esip.generate_trange_series(tbg_imaging, ted_imaging, tdt_imaging)

	
suncasa.eovsa.eovsa_synoptic_imaging_pipeline.description = 'this code is trying to address the issue of smearing effect in all-day synthesis images....'

	

suncasa.eovsa.impteovsa

Module Contents

Functions

	jd2mjds([tjd])

	

	bl_list2([nant])

	Returns a two-dimensional array bl2ord that will translate

	get_band([sfreq, sdf, date])

	

	creatms(idbfile, outpath[, timebin, width])

	

Attributes

	tools

	

	smtool

	

	metool

	

	me

	

	c_external

	

	
suncasa.eovsa.impteovsa.tools

	

	
suncasa.eovsa.impteovsa.smtool

	

	
suncasa.eovsa.impteovsa.metool

	

	
suncasa.eovsa.impteovsa.me

	

	
suncasa.eovsa.impteovsa.c_external = False

	

	
suncasa.eovsa.impteovsa.jd2mjds(tjd=None)

	

	
suncasa.eovsa.impteovsa.bl_list2(nant=16)

	Returns a two-dimensional array bl2ord that will translate
a pair of antenna indexes (antenna number - 1) to the ordinal
number of the baseline in the ‘x’ key. Note bl2ord(i,j) = bl2ord(j,i),
and bl2ord(i,i) = -1.

	
suncasa.eovsa.impteovsa.get_band(sfreq=None, sdf=None, date=None)

	

	
suncasa.eovsa.impteovsa.creatms(idbfile, outpath, timebin=None, width=None)

	

suncasa.eovsa.msUtils

Module Contents

Functions

	getAntennaPosition(vis)

	

	getObservatoryName(ms)

	Returns the observatory name in the specified ms, using the tb tool.

	buildConfigurationFile([vis, cfgfile])

	

Attributes

	tools

	

	tbtool

	

	tb

	

	
suncasa.eovsa.msUtils.tools

	

	
suncasa.eovsa.msUtils.tbtool

	

	
suncasa.eovsa.msUtils.tb

	

	
suncasa.eovsa.msUtils.getAntennaPosition(vis)

	

	
suncasa.eovsa.msUtils.getObservatoryName(ms)

	Returns the observatory name in the specified ms, using the tb tool.
– Todd Hunter

	
suncasa.eovsa.msUtils.buildConfigurationFile(vis='', cfgfile=None)

	

suncasa.io

Submodules

	suncasa.io.ndfits

suncasa.io.ndfits

Module Contents

Functions

	is_compressed_fits(fitsfile)

	Function to check if the FITS file contains compressed data

	headerfix(header[, PC_coor])

	this code fixes the header problem of fits out from CASA 5.4+ which leads to a streched solar image.

	headerparse(header)

	get axis index of polarization

	headersqueeze(header, data)

	Squeezes single-dimensional entries from an n-dimensional FITS image data array and updates the FITS header accordingly.

	get_bdinfo(freq, bw)

	get band information from center frequencies and band widths.

	read(filepath[, hdus, verbose])

	Read a fits file.

	write(fname, data, header[, mask, fix_invalid, ...])

	Take a data header pair and write a compressed FITS file.

	header_to_xml(header)

	

	write_j2000_image(fname, data, header)

	

	wrap(fitsfiles[, outfitsfile, docompress, mask, ...])

	wrap single frequency fits files into a multiple frequencies fits file

	update(fitsfile[, new_data, new_columns, ...])

	Updates a FITS file by optionally replacing its primary or compressed image data, adding new columns to the

Attributes

	stokesval

	

	
suncasa.io.ndfits.stokesval

	

	
suncasa.io.ndfits.is_compressed_fits(fitsfile)

	Function to check if the FITS file contains compressed data

	
suncasa.io.ndfits.headerfix(header, PC_coor=True)

	
this code fixes the header problem of fits out from CASA 5.4+ which leads to a streched solar image.

Setting PC_coor equal to True will reset the rotation matrix.

	
suncasa.io.ndfits.headerparse(header)

	get axis index of polarization

	
suncasa.io.ndfits.headersqueeze(header, data)

	Squeezes single-dimensional entries from an n-dimensional FITS image data array and updates the FITS header accordingly.

This function is useful for preparing image data for astropy fits compression, which only supports 1D, 2D, or 3D images. It removes
any single-dimensional entries from the shape of the data array and updates the corresponding FITS header keys to reflect the
new dimensions.

	Parameters:

	
	header (astropy.io.fits.Header) – FITS header object containing the metadata of the image.

	data (numpy.ndarray) – n-dimensional image data array.

	Returns:

	A tuple of the updated header object and the squeezed data array.

	Return type:

	(astropy.io.fits.Header, numpy.ndarray)

Note

This function only updates the header keys related to dimensions, coordinate types, values, increments, reference pixels,
and units. Any specific header keys related to coordinate transformations (e.g., PC matrix) for dimensions higher than
the third are also updated if necessary. The function does not handle higher-order WCS transformations beyond simple axis
permutations and squeezes.

	
suncasa.io.ndfits.get_bdinfo(freq, bw)

	get band information from center frequencies and band widths.

	Parameters:

	
	freq (array_like) – an array of the center frequencies of all frequency bands in Hz

	bw (array_like) – an array of the band widths of all frequency bands in Hz

	Returns:

	fbounds – A dict of band information

	Return type:

	dict

	
suncasa.io.ndfits.read(filepath, hdus=None, verbose=False, **kwargs)

	Read a fits file.

	Parameters:

	
	filepath (str) – The fits file to be read.

	hdus (int or iterable) – The HDU indexes to read from the file.

	verbose (bool) – if verbose

	Returns:

	pairs – A list of (data, header) tuples

	Return type:

	list

Notes

This routine reads all the HDU’s in a fits file and returns a list of the
data and a FileHeader instance for each one.

Also all comments in the original file are concatenated into a single
“comment” key in the returned FileHeader.

	
suncasa.io.ndfits.write(fname, data, header, mask=None, fix_invalid=True, filled_value=0.0, overwrite=True, **kwargs)

	Take a data header pair and write a compressed FITS file.
Caveat: only 1D, 2D, or 3D images are currently supported by Astropy fits compression.
To be compressed, the image data array (n-dimensional) must have
at least n-3 single-dimensional entries.

	Parameters:

	
	fname (str) – File name, with extension.

	data (numpy.ndarray) – n-dimensional data array.

	header (dict) – A header dictionary.

	compression_type (str, optional) – Compression algorithm: one of ‘RICE_1’, ‘RICE_ONE’, ‘PLIO_1’, ‘GZIP_1’, ‘GZIP_2’, ‘HCOMPRESS_1’

	hcomp_scale (float, optional) – HCOMPRESS scale parameter

	
suncasa.io.ndfits.header_to_xml(header)

	

	
suncasa.io.ndfits.write_j2000_image(fname, data, header)

	

	
suncasa.io.ndfits.wrap(fitsfiles, outfitsfile=None, docompress=False, mask=None, fix_invalid=True, filled_value=0.0, observatory=None, imres=None, verbose=False, **kwargs)

	wrap single frequency fits files into a multiple frequencies fits file

	
suncasa.io.ndfits.update(fitsfile, new_data=None, new_columns=None, new_header_entries=None)

	Updates a FITS file by optionally replacing its primary or compressed image data, adding new columns to the
first binary table (BinTableHDU), and/or updating header entries in the first image HDU (PrimaryHDU for
uncompressed or CompImageHDU for compressed FITS files).

Parameters:
- fitsfile (str): Path to the FITS file to be updated.
- new_data (np.ndarray, optional): New data array to replace the existing data in the first image HDU.

Defaults to None, which means the data will not be updated.

	new_columns (list of astropy.io.fits.Column, optional): New columns to be added to the first BinTableHDU.
Defaults to None, which means no columns will be added.

	new_header_entries (dict, optional): Header entries to update or add in the first image HDU. Each key-value
pair represents a header keyword and its new value. Defaults to None, which means no header updates will be made.

Returns:
- bool: True if any of the specified updates were successfully applied, False otherwise.

The function determines whether the FITS file is compressed to properly handle the image HDU type. It attempts
to update the image HDU’s data, the BinTableHDU’s columns, and the image HDU’s header based on the provided
arguments. If all input parameters are None, indicating no updates are specified, the function will print a message
and return False.

suncasa.suncasatasks

Subpackages

	suncasa.suncasatasks.private
	suncasa.suncasatasks.private.task_calibeovsa

	suncasa.suncasatasks.private.task_concateovsa

	suncasa.suncasatasks.private.task_importeovsa

	suncasa.suncasatasks.private.task_pimfit

	suncasa.suncasatasks.private.task_pmaxfit

	suncasa.suncasatasks.private.task_ptclean

	suncasa.suncasatasks.private.task_ptclean6

	suncasa.suncasatasks.private.task_subvs

Submodules

	suncasa.suncasatasks.buildsuncasatasks

	suncasa.suncasatasks.calibeovsa

	suncasa.suncasatasks.concateovsa

	suncasa.suncasatasks.importeovsa

	suncasa.suncasatasks.pimfit

	suncasa.suncasatasks.pmaxfit

	suncasa.suncasatasks.ptclean

	suncasa.suncasatasks.ptclean6

	suncasa.suncasatasks.signalsmooth

	suncasa.suncasatasks.subvs

Package Contents

	
suncasa.suncasatasks.ptclean6

	

	
suncasa.suncasatasks.subvs

	

	
suncasa.suncasatasks.concateovsa

	

suncasa.suncasatasks.private

Submodules

	suncasa.suncasatasks.private.task_calibeovsa

	suncasa.suncasatasks.private.task_concateovsa

	suncasa.suncasatasks.private.task_importeovsa

	suncasa.suncasatasks.private.task_pimfit

	suncasa.suncasatasks.private.task_pmaxfit

	suncasa.suncasatasks.private.task_ptclean

	suncasa.suncasatasks.private.task_ptclean6

	suncasa.suncasatasks.private.task_subvs

suncasa.suncasatasks.private.task_calibeovsa

Module Contents

Functions

	calibeovsa([vis, caltype, caltbdir, interp, docalib, ...])

	
	param vis:

	EOVSA visibility dataset(s) to be calibrated

Attributes

	tasks

	

	split

	

	tclean

	

	gencal

	

	clearcal

	

	applycal

	

	flagdata

	

	casalog

	

	bandpass

	

	tools

	

	tbtool

	

	mstool

	

	qatool

	

	iatool

	

	tb

	

	ms

	

	qa

	

	ia

	

	
suncasa.suncasatasks.private.task_calibeovsa.tasks

	

	
suncasa.suncasatasks.private.task_calibeovsa.split

	

	
suncasa.suncasatasks.private.task_calibeovsa.tclean

	

	
suncasa.suncasatasks.private.task_calibeovsa.gencal

	

	
suncasa.suncasatasks.private.task_calibeovsa.clearcal

	

	
suncasa.suncasatasks.private.task_calibeovsa.applycal

	

	
suncasa.suncasatasks.private.task_calibeovsa.flagdata

	

	
suncasa.suncasatasks.private.task_calibeovsa.casalog

	

	
suncasa.suncasatasks.private.task_calibeovsa.bandpass

	

	
suncasa.suncasatasks.private.task_calibeovsa.tools

	

	
suncasa.suncasatasks.private.task_calibeovsa.tbtool

	

	
suncasa.suncasatasks.private.task_calibeovsa.mstool

	

	
suncasa.suncasatasks.private.task_calibeovsa.qatool

	

	
suncasa.suncasatasks.private.task_calibeovsa.iatool

	

	
suncasa.suncasatasks.private.task_calibeovsa.tb

	

	
suncasa.suncasatasks.private.task_calibeovsa.ms

	

	
suncasa.suncasatasks.private.task_calibeovsa.qa

	

	
suncasa.suncasatasks.private.task_calibeovsa.ia

	

	
suncasa.suncasatasks.private.task_calibeovsa.calibeovsa(vis=None, caltype=None, caltbdir='', interp=None, docalib=True, doflag=True, flagant='13~15', doimage=False, imagedir=None, antenna=None, timerange=None, spw=None, stokes=None, dosplit=False, outputvis=None, doconcat=False, concatvis=None, keep_orig_ms=True)

	
	Parameters:

	
	vis – EOVSA visibility dataset(s) to be calibrated

	caltype –

	interp –

	docalib –

	qlookimage –

	flagant –

	stokes –

	doconcat –

	Returns:

	

suncasa.suncasatasks.private.task_concateovsa

Module Contents

Functions

	concateovsa(vis, concatvis[, datacolumn, ...])

	

Attributes

	tools

	

	tbtool

	

	tb

	

	
suncasa.suncasatasks.private.task_concateovsa.tools

	

	
suncasa.suncasatasks.private.task_concateovsa.tbtool

	

	
suncasa.suncasatasks.private.task_concateovsa.tb

	

	
suncasa.suncasatasks.private.task_concateovsa.concateovsa(vis, concatvis, datacolumn='corrected', keep_orig_ms=True, cols2rm='model,corrected', freqtol='', dirtol='', respectname=False, timesort=True, copypointing=True, visweightscale=[], forcesingleephemfield='')

	

suncasa.suncasatasks.private.task_importeovsa

Module Contents

Functions

	udb_corr_external(filelist, udbcorr_path[, ...])

	

	trange2filelist([trange, verbose])

	This finds all solar IDB files within a timerange;

	importeovsa_iter(filelist, timebin, width, visprefix, ...)

	

	importeovsa([idbfiles, ncpu, timebin, width, ...])

	

Attributes

	py3

	

	tasks

	

	split

	

	casalog

	

	tools

	

	tbtool

	

	mstool

	

	qatool

	

	iatool

	

	tb

	

	ms

	

	qa

	

	ia

	

	c_external

	

	
suncasa.suncasatasks.private.task_importeovsa.py3

	

	
suncasa.suncasatasks.private.task_importeovsa.tasks

	

	
suncasa.suncasatasks.private.task_importeovsa.split

	

	
suncasa.suncasatasks.private.task_importeovsa.casalog

	

	
suncasa.suncasatasks.private.task_importeovsa.tools

	

	
suncasa.suncasatasks.private.task_importeovsa.tbtool

	

	
suncasa.suncasatasks.private.task_importeovsa.mstool

	

	
suncasa.suncasatasks.private.task_importeovsa.qatool

	

	
suncasa.suncasatasks.private.task_importeovsa.iatool

	

	
suncasa.suncasatasks.private.task_importeovsa.tb

	

	
suncasa.suncasatasks.private.task_importeovsa.ms

	

	
suncasa.suncasatasks.private.task_importeovsa.qa

	

	
suncasa.suncasatasks.private.task_importeovsa.ia

	

	
suncasa.suncasatasks.private.task_importeovsa.c_external = False

	

	
suncasa.suncasatasks.private.task_importeovsa.udb_corr_external(filelist, udbcorr_path, use_exist_udbcorr=False)

	

	
suncasa.suncasatasks.private.task_importeovsa.trange2filelist(trange=[], verbose=False)

	This finds all solar IDB files within a timerange;
Required inputs:
trange - can be 1) a single string or Time() object in UTC: use the entire day, e.g., ‘2017-08-01’ or Time(‘2017-08-01’)

if just a date, find all scans withing the same date in local time.
if a complete time stamp, find the local date first (which may be different from that provided,

and return all scans within that day

	a range of Time(), e.g., Time([‘2017-08-01 00:00’,’2017-08-01 23:00’])

	None – use current date Time.now()

	
suncasa.suncasatasks.private.task_importeovsa.importeovsa_iter(filelist, timebin, width, visprefix, nocreatms, modelms, doscaling, keep_nsclms, fileidx)

	

	
suncasa.suncasatasks.private.task_importeovsa.importeovsa(idbfiles=None, ncpu=None, timebin=None, width=None, visprefix=None, udb_corr=True, nocreatms=None, doconcat=None, modelms=None, doscaling=False, keep_nsclms=False, use_exist_udbcorr=False)

	

suncasa.suncasatasks.private.task_pimfit

Module Contents

Functions

	imfit_iter(imgfiles, doreg, tims, msinfofile, ephem, ...)

	

	pimfit(imagefiles, ncpu, doreg, timestamps, ...)

	

Attributes

	tasks

	

	split

	

	tclean

	

	gencal

	

	clearcal

	

	applycal

	

	flagdata

	

	casalog

	

	bandpass

	

	tools

	

	iatool

	

	rgtool

	

	myia

	

	myrg

	

	
suncasa.suncasatasks.private.task_pimfit.tasks

	

	
suncasa.suncasatasks.private.task_pimfit.split

	

	
suncasa.suncasatasks.private.task_pimfit.tclean

	

	
suncasa.suncasatasks.private.task_pimfit.gencal

	

	
suncasa.suncasatasks.private.task_pimfit.clearcal

	

	
suncasa.suncasatasks.private.task_pimfit.applycal

	

	
suncasa.suncasatasks.private.task_pimfit.flagdata

	

	
suncasa.suncasatasks.private.task_pimfit.casalog

	

	
suncasa.suncasatasks.private.task_pimfit.bandpass

	

	
suncasa.suncasatasks.private.task_pimfit.tools

	

	
suncasa.suncasatasks.private.task_pimfit.iatool

	

	
suncasa.suncasatasks.private.task_pimfit.rgtool

	

	
suncasa.suncasatasks.private.task_pimfit.myia

	

	
suncasa.suncasatasks.private.task_pimfit.myrg

	

	
suncasa.suncasatasks.private.task_pimfit.imfit_iter(imgfiles, doreg, tims, msinfofile, ephem, box, region, chans, stokes, mask, includepix, excludepix, residual, model, estimates, logfile, append, newestimates, complist, overwrite, dooff, offset, fixoffset, stretch, rms, noisefwhm, summary, imidx)

	

	
suncasa.suncasatasks.private.task_pimfit.pimfit(imagefiles, ncpu, doreg, timestamps, msinfofile, ephemfile, box, region, chans, stokes, mask, includepix, excludepix, residual, model, estimates, logfile, append, newestimates, complist, overwrite, dooff, offset, fixoffset, stretch, rms, noisefwhm, summary)

	

suncasa.suncasatasks.private.task_pmaxfit

Module Contents

Functions

	maxfit_iter(imgfiles, box, width, imidx)

	

	pmaxfit(imagefiles, ncpu, box, width)

	

Attributes

	tasks

	

	casalog

	

	tools

	

	iatool

	

	rgtool

	

	
suncasa.suncasatasks.private.task_pmaxfit.tasks

	

	
suncasa.suncasatasks.private.task_pmaxfit.casalog

	

	
suncasa.suncasatasks.private.task_pmaxfit.tools

	

	
suncasa.suncasatasks.private.task_pmaxfit.iatool

	

	
suncasa.suncasatasks.private.task_pmaxfit.rgtool

	

	
suncasa.suncasatasks.private.task_pmaxfit.maxfit_iter(imgfiles, box, width, imidx)

	

	
suncasa.suncasatasks.private.task_pmaxfit.pmaxfit(imagefiles, ncpu, box, width)

	

suncasa.suncasatasks.private.task_ptclean

Module Contents

Functions

	clean_iter(tim, vis, imageprefix, imagesuffix, twidth, ...)

	

	ptclean(vis, imageprefix, imagesuffix, ncpu, twidth, ...)

	

Attributes

	tasks

	

	split

	

	tclean

	

	casalog

	

	tools

	

	tbtool

	

	mstool

	

	qatool

	

	tb

	

	ms

	

	qa

	

	c_external

	

	
suncasa.suncasatasks.private.task_ptclean.tasks

	

	
suncasa.suncasatasks.private.task_ptclean.split

	

	
suncasa.suncasatasks.private.task_ptclean.tclean

	

	
suncasa.suncasatasks.private.task_ptclean.casalog

	

	
suncasa.suncasatasks.private.task_ptclean.tools

	

	
suncasa.suncasatasks.private.task_ptclean.tbtool

	

	
suncasa.suncasatasks.private.task_ptclean.mstool

	

	
suncasa.suncasatasks.private.task_ptclean.qatool

	

	
suncasa.suncasatasks.private.task_ptclean.tb

	

	
suncasa.suncasatasks.private.task_ptclean.ms

	

	
suncasa.suncasatasks.private.task_ptclean.qa

	

	
suncasa.suncasatasks.private.task_ptclean.c_external = False

	

	
suncasa.suncasatasks.private.task_ptclean.clean_iter(tim, vis, imageprefix, imagesuffix, twidth, doreg, docompress, usephacenter, reftime, ephem, msinfo, toTb, sclfactor, overwrite, selectdata, field, spw, uvrange, antenna, scan, observation, intent, datacolumn, imsize, cell, phasecenter, stokes, projection, startmodel, specmode, reffreq, nchan, start, width, outframe, veltype, restfreq, interpolation, gridder, facets, chanchunks, wprojplanes, vptable, usepointing, mosweight, aterm, psterm, wbawp, conjbeams, cfcache, computepastep, rotatepastep, pblimit, normtype, deconvolver, scales, nterms, smallscalebias, restoration, restoringbeam, pbcor, outlierfile, weighting, robust, npixels, uvtaper, niter, gain, threshold, nsigma, cycleniter, cyclefactor, minpsffraction, maxpsffraction, interactive, usemask, mask, pbmask, sidelobethreshold, noisethreshold, lownoisethreshold, negativethreshold, smoothfactor, minbeamfrac, cutthreshold, growiterations, dogrowprune, minpercentchange, verbose, restart, savemodel, calcres, calcpsf, parallel, subregion, tmpdir, btidx)

	

	
suncasa.suncasatasks.private.task_ptclean.ptclean(vis, imageprefix, imagesuffix, ncpu, twidth, doreg, usephacenter, reftime, toTb, sclfactor, subregion, docompress, overwrite, selectdata, field, spw, timerange, uvrange, antenna, scan, observation, intent, datacolumn, imsize, cell, phasecenter, stokes, projection, startmodel, specmode, reffreq, nchan, start, width, outframe, veltype, restfreq, interpolation, gridder, facets, chanchunks, wprojplanes, vptable, usepointing, mosweight, aterm, psterm, wbawp, conjbeams, cfcache, computepastep, rotatepastep, pblimit, normtype, deconvolver, scales, nterms, smallscalebias, restoration, restoringbeam, pbcor, outlierfile, weighting, robust, npixels, uvtaper, niter, gain, threshold, nsigma, cycleniter, cyclefactor, minpsffraction, maxpsffraction, interactive, usemask, mask, pbmask, sidelobethreshold, noisethreshold, lownoisethreshold, negativethreshold, smoothfactor, minbeamfrac, cutthreshold, growiterations, dogrowprune, minpercentchange, verbose, restart, savemodel, calcres, calcpsf, parallel)

	

suncasa.suncasatasks.private.task_ptclean6

Module Contents

Functions

	clean_iter(tim, vis, imageprefix, imagesuffix, twidth, ...)

	

	ptclean6(vis, imageprefix, imagesuffix, ncpu, twidth, ...)

	

Attributes

	tasks

	

	split

	

	tclean

	

	casalog

	

	tools

	

	tbtool

	

	mstool

	

	qatool

	

	tb

	

	ms

	

	qa

	

	c_external

	

	
suncasa.suncasatasks.private.task_ptclean6.tasks

	

	
suncasa.suncasatasks.private.task_ptclean6.split

	

	
suncasa.suncasatasks.private.task_ptclean6.tclean

	

	
suncasa.suncasatasks.private.task_ptclean6.casalog

	

	
suncasa.suncasatasks.private.task_ptclean6.tools

	

	
suncasa.suncasatasks.private.task_ptclean6.tbtool

	

	
suncasa.suncasatasks.private.task_ptclean6.mstool

	

	
suncasa.suncasatasks.private.task_ptclean6.qatool

	

	
suncasa.suncasatasks.private.task_ptclean6.tb

	

	
suncasa.suncasatasks.private.task_ptclean6.ms

	

	
suncasa.suncasatasks.private.task_ptclean6.qa

	

	
suncasa.suncasatasks.private.task_ptclean6.c_external = False

	

	
suncasa.suncasatasks.private.task_ptclean6.clean_iter(tim, vis, imageprefix, imagesuffix, twidth, doreg, docompress, usephacenter, reftime, ephem, msinfo, toTb, sclfactor, subregion, overwrite, selectdata, field, spw, timerange, uvrange, antenna, scan, observation, intent, datacolumn, imagename, imsize, cell, phasecenter, stokes, projection, startmodel, specmode, reffreq, nchan, start, width, outframe, veltype, restfreq, interpolation, perchanweightdensity, gridder, facets, psfphasecenter, wprojplanes, vptable, mosweight, aterm, psterm, wbawp, conjbeams, cfcache, usepointing, computepastep, rotatepastep, pointingoffsetsigdev, pblimit, normtype, deconvolver, scales, nterms, smallscalebias, restoration, restoringbeam, pbcor, outlierfile, weighting, robust, noise, npixels, uvtaper, niter, gain, threshold, nsigma, cycleniter, cyclefactor, minpsffraction, maxpsffraction, interactive, usemask, mask, pbmask, sidelobethreshold, noisethreshold, lownoisethreshold, negativethreshold, smoothfactor, minbeamfrac, cutthreshold, growiterations, dogrowprune, minpercentchange, verbose, fastnoise, restart, savemodel, calcres, calcpsf, psfcutoff, parallel, btidx)

	

	
suncasa.suncasatasks.private.task_ptclean6.ptclean6(vis, imageprefix, imagesuffix, ncpu, twidth, doreg, usephacenter, reftime, toTb, sclfactor, subregion, docompress, overwrite, selectdata, field, spw, timerange, uvrange, antenna, scan, observation, intent, datacolumn, imagename, imsize, cell, phasecenter, stokes, projection, startmodel, specmode, reffreq, nchan, start, width, outframe, veltype, restfreq, interpolation, perchanweightdensity, gridder, facets, psfphasecenter, wprojplanes, vptable, mosweight, aterm, psterm, wbawp, conjbeams, cfcache, usepointing, computepastep, rotatepastep, pointingoffsetsigdev, pblimit, normtype, deconvolver, scales, nterms, smallscalebias, restoration, restoringbeam, pbcor, outlierfile, weighting, robust, noise, npixels, uvtaper, niter, gain, threshold, nsigma, cycleniter, cyclefactor, minpsffraction, maxpsffraction, interactive, usemask, mask, pbmask, sidelobethreshold, noisethreshold, lownoisethreshold, negativethreshold, smoothfactor, minbeamfrac, cutthreshold, growiterations, dogrowprune, minpercentchange, verbose, fastnoise, restart, savemodel, calcres, calcpsf, psfcutoff, parallel)

	

suncasa.suncasatasks.private.task_subvs

Module Contents

Functions

	subvs([vis, outputvis, timerange, spw, mode, ...])

	Perform vector subtraction for visibilities

Attributes

	tasks

	

	casalog

	

	tools

	

	mstool

	

	msmdtool

	

	qatool

	

	datams

	

	ms_in

	

	datamsmd

	

	qa

	

	
suncasa.suncasatasks.private.task_subvs.tasks

	

	
suncasa.suncasatasks.private.task_subvs.casalog

	

	
suncasa.suncasatasks.private.task_subvs.tools

	

	
suncasa.suncasatasks.private.task_subvs.mstool

	

	
suncasa.suncasatasks.private.task_subvs.msmdtool

	

	
suncasa.suncasatasks.private.task_subvs.qatool

	

	
suncasa.suncasatasks.private.task_subvs.datams

	

	
suncasa.suncasatasks.private.task_subvs.ms_in

	

	
suncasa.suncasatasks.private.task_subvs.datamsmd

	

	
suncasa.suncasatasks.private.task_subvs.qa

	

	
suncasa.suncasatasks.private.task_subvs.subvs(vis=None, outputvis=None, timerange='', spw='', mode='linear', subtime1='', subtime2='', smoothaxis='time', smoothtype='flat', smoothwidth='5', splitsel=True, reverse=False, overwrite=False)

	Perform vector subtraction for visibilities
Keyword arguments:
vis – Name of input visibility file (MS)

default: none; example: vis=’ngc5921.ms’

	outputvis – Name of output uv-subtracted visibility file (MS)
	default: none; example: outputvis=’ngc5921_src.ms’

	timerange – Time range of performing the UV subtraction:
	default=’’ means all times. examples:
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
timerange = ‘hh:mm:ss~hh:mm:ss’

	spw – Select spectral window/channel.
	default = ‘’ all the spectral channels. Example: spw=’0:1~20’

	mode – operation mode
	
	default ‘linear’
	mode = ‘linear’: use a linear fit for the background to be subtracted
mode = ‘lowpass’: act as a lowpass filter—smooth the data using different

smooth types and window sizes. Can be performed along either time
or frequency axis

	mode = ‘highpass’: act as a highpass filter—smooth the data first, and
	subtract the smoothed data from the original. Can be performed along
either time or frequency axis

	mode = ‘linear’ expandable parameters:
	
	subtime1 – Time range 1 of the background to be subtracted from the data
	default=’’ means all times. format:
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
timerange = ‘hh:mm:ss~hh:mm:ss’

	subtime2 – Time range 2 of the backgroud to be subtracted from the data
	default=’’ means all times. examples:
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
timerange = ‘hh:mm:ss~hh:mm:ss’

	mode = ‘lowpass’ or ‘highpass’ expandable parameters:
	
	smoothaxis – axis of smooth
	Default: ‘time’
smoothaxis = ‘time’: smooth is along the time axis
smoothaxis = ‘freq’: smooth is along the frequency axis

	smoothtype – type of the smooth depending on the convolving kernel
	Default: ‘flat’
smoothtype = ‘flat’: convolving kernel is a flat rectangle,

equivalent to a boxcar moving smooth

smoothtype = ‘hanning’: Hanning smooth kernel. See numpy.hanning
smoothtype = ‘hamming’: Hamming smooth kernel. See numpy.hamming
smoothtype = ‘bartlett’: Bartlett smooth kernel. See numpy.bartlett
smoothtype = ‘blackman’: Blackman smooth kernel. See numpy.blackman

	smoothwidth – width of the smooth kernel
	Default: 5
Examples: smoothwidth=5, meaning the width is 5 pixels

	splitsel – True or False. default = False. If splitsel = False, then the entire input
	measurement set is copied as the output measurement set (outputvis), with
background subtracted at selected timerange and spectral channels.
If splitsel = True,then only the selected timerange and spectral channels
are copied into the output measurement set (outputvis).

	reverse – True or False. default = False. If reverse = False, then the times indicated
	by subtime1 and/or subtime2 are treated as background and subtracted; If reverse
= True, then reverse the sign of the background-subtracted data. The option can
be used for mapping absorptive structure.

	overwrite – True or False. default = False. If overwrite = True and
	outputvis already exists, the selected subtime and spw in the
output measurment set will be replaced with background subtracted
visibilities

suncasa.suncasatasks.buildsuncasatasks

Module Contents

	
suncasa.suncasatasks.buildsuncasatasks.xmlfiles = ['calibeovsa.xml', 'importeovsa.xml']

	

suncasa.suncasatasks.calibeovsa

Module Contents

Classes

	_calibeovsa

	calibeovsa ---- Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.

Attributes

	_pc

	

	calibeovsa

	

	
suncasa.suncasatasks.calibeovsa._pc

	

	
class suncasa.suncasatasks.calibeovsa._calibeovsa

	calibeovsa —- Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.

Calibrating EOVSA one or more measurement sets using calibration products in the SQL database. This task currently only works on pipeline.

——— parameter descriptions ———————————————

vis input EOVSA (uncalibrated) measurement set(s).
caltype Types of calibrations to perform
caltbdir Directory to place calibration tables.
interp Temporal interpolation for phacal table(s) (nearest or linear)
docalib If False, only create the calibration tables but do not perform applycal.
doflag If true then perform flagging.
flagant Antennas to be flagged. Follow CASA syntax of “antenna”.
doimage If True, produce a quicklook image after calibration (sunpy must be installed).
imagedir directory to place output images. Default current directory.
antenna antenna/baselines to be used for imaging. Follow CASA syntax of “antenna”.
timerange Timerange to be imaged. Follow CASA syntax of “timerange”. Default is the entire duration of the ms.
spw spectral windows to be imaged. Follow CASA syntax of “spw”.
stokes stokes to be imaged. Follow CASA syntax of “stokes”.
dosplit If True, plit the corrected data column as output visibility file.
outputvis Name of output visibility file. Default is the name of the first vis file ended with “.corrected.ms”.
doconcat If True, and if more than one visibility dataset provided, concatenate all into one visibility.
concatvis Name of output visibility file. Default is the name of the first + last vis file ended with “.corrected.ms”.
keep_orig_ms Keep the original seperated ms datasets after split?

——— examples ———————————————————–

Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.

Detailed Keyword arguments:

vis – Name of input EOVSA measurement set dataset(s)
default: none. Must be supplied
example: vis = ‘IDB20160524000518.ms’
example: vis = [‘IDB20160524000518.ms’,’IDB20160524000528.ms’]

caltype – list. Type of calibrations to be applied.
‘refpha’: reference phase calibration
‘refamp’: reference amplitude calibration (not used anymore)
‘phacal’: daily phase calibration
‘fluxcal’: flux calibration based on total-power measurements
default value: [‘refpha’,’phacal’]
* note fluxcal is already implemented in udb_corr when doing importeovsa, should not be used anymore **
*** pipeline only uses [‘refpha’,’phacal’]

caltbdir – string. Place to hold calibration tables. Default is current directory. Pipeline should use /data1/eovsa/caltable

interp – string. How interpolation is done for phacal? ‘nearest’ or ‘linear’

docalib – boolean. Default True. If False, only create the calibration tables but do not perform applycal

doflag – boolean. Default True. Peforming flags?

flagant – string. Follow CASA antenna selection syntax. Default ‘13~15’.

doimage – boolean. Default False. If true, make a quicklook image using the specified time range and specified spw range

imagedir – string. Directory to place the output image.

antenna – string. Default ‘0~12’. Antenna/baselines to be used for imaging. Follow CASA antenna selection syntax.

timerange – string. Default ‘’ (the whole duration of the visibility data). Follow CASA timerange syntax.
e.g., ‘2017/07/11/20:16:00~2017/07/11/20:17:00’

spw – string. Default ‘1~3’. Follow CASA spw selection syntax.

stokes – string. Which stokes for the quicklook image. CASA syntax. Default ‘XX’

dosplit – boolean. Split the corrected data column?

outputvis – string. Output visibility file after split

doconcat – boolean. If more than one visibility dataset provided, concatenate all into one or make separate outputs if True

concatvis – string. Output visibility file after concatenation

keep_orig_ms – boolean. Default True. Inherited from suncasa.eovsa.concateovsa.
Keep the original seperated ms datasets after concatenation?

	
_info_group_ = 'Calibration'

	

	
_info_desc_ = 'Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.'

	

	
__call__(vis='', caltype=[], caltbdir='', interp='nearest', docalib=True, doflag=True, flagant='13~15', doimage=False, imagedir='.', antenna='0~12', timerange='', spw='1~3', stokes='XX', dosplit=False, outputvis='', doconcat=False, concatvis='', keep_orig_ms=True)

	

	
suncasa.suncasatasks.calibeovsa.calibeovsa

	

suncasa.suncasatasks.concateovsa

Module Contents

Classes

	_concateovsa

	concateovsa ---- Concatenate several EOVSA visibility data sets.

Attributes

	_pc

	

	concateovsa

	

	
suncasa.suncasatasks.concateovsa._pc

	

	
class suncasa.suncasatasks.concateovsa._concateovsa

	concateovsa —- Concatenate several EOVSA visibility data sets.

This is a EOVSA version of CASA concat task.

The list of data sets given in the vis argument are chronologically concatenated
into an output data set in concatvis, i.e. the data sets in vis are first ordered
by the time of their earliest integration and then concatenated.

If there are fields whose direction agrees within the direction tolerance
(parameter dirtol), the actual direction in the resulting, merged output field
will be the one from the chronologically first input MS.

If concatvis already exists (e.g., it is the same as the first input data set),
then the other input data sets will be appended to the concatvis data set.
There is no limit to the number of input data sets.

If none of the input data sets have any scratch columns (model and corrected
columns), none are created in the concatvis. Otherwise these columns are
created on output and initialized to their default value (1 in model column,
data in corrected column) for those data with no input columns.

Spectral windows for each data set with the same chanelization, and within a
specified frequency tolerance of another data set will be combined into one
spectral window.

A field position in one data set that is within a specified direction tolerance
of another field position in any other data set will be combined into one
field. The field names need not be the same—only their position is used.

Each appended dataset is assigned a new observation id (provided the entries
in the observation table are indeed different).

Keyword arguments:
vis – Name of input visibility files to be combined
default: none; example: vis = [‘src2.ms’,’ngc5921.ms’,’ngc315.ms’]
concatvis – Name of visibility file that will contain the concatenated data
note: if this file exits on disk then the input files are
added to this file. Otherwise the new file contains
the concatenated data. Be careful here when concatenating to
an existing file.
default: none; example: concatvis=’src2.ms’
example: concatvis=’outvis.ms’

datacolumn – Which data column to use for processing (case-insensitive).
default: ‘corrected’; example: datacolumn=’data’
options: ‘data’, ‘corrected’.

freqtol – Frequency shift tolerance for considering data to be in the same
spwid. The number of channels must also be the same.
default: ‘’ == 1 Hz
example: freqtol=’10MHz’ will not combine spwid unless they are
within 10 MHz.
Note: This option is useful to combine spectral windows with very slight
frequency differences caused by Doppler tracking, for example.

dirtol – Direction shift tolerance for considering data as the same field
default: ‘’ == 1 mas (milliarcsec)
example: dirtol=’1arcsec’ will not combine data for a field unless
their phase center differ by less than 1 arcsec. If the field names
are different in the input data sets, the name in the output data
set will be the first relevant data set in the list.

respectname – If true, fields with a different name are not merged even if their
direction agrees (within dirtol)
default: False

timesort – If true, the output visibility table will be sorted in time.
default: false. Data in order as read in.
example: timesort=true
Note: There is no constraint on data that is simultaneously observed for
more than one field; for example multi-source correlation of VLBA data.

copypointing – Make a proper copy of the POINTING subtable (can be time consuming).
If False, the result is an empty POINTING table.
default: True

visweightscale – The weights of the individual MSs will be scaled in the concatenated
output MS by the factors in this list. SIGMA will be scaled by 1/sqrt(factor).
Useful for handling heterogeneous arrays.
Use plotms to inspect the “Wt” column as a reference for determining the scaling
factors. See the cookbook for more details.
example: [1.,3.,3.] - scale the weights of the second and third MS by a factor 3
and the SIGMA column of these MS by a factor 1/sqrt(3).
default: [] (empty list) - no scaling

forcesingleephemfield – By default, concat will only merge two ephemeris fields if
the first ephemeris covers the time range of the second. Otherwise, two separate
fields with separate ephemerides are placed in the output MS.
In order to override this behaviour and make concat merge the non-overlapping
or only partially overlapping input ephemerides, the name or id of the field
in question needs to be placed into the list in parameter ‘forcesingleephemfield’.
example: [‘Neptune’] - will make sure that there is only one joint ephemeris for
field Neptune in the output MS
default: ‘’ - standard treatment of all ephemeris fields

——— parameter descriptions ———————————————

vis Name of input visibility files to be concatenated
concatvis Name of output visibility file
datacolumn Which data column(s) to concatenate
keep_orig_ms If false, input vis files will be removed
cols2rm Columns in concatvis to be removed to slim the concatvis
freqtol Frequency shift tolerance for considering data as the same spwid
dirtol Direction shift tolerance for considering data as the same field
respectname If true, fields with a different name are not merged even if their direction agrees
timesort If true, sort by TIME in ascending order
copypointing Copy all rows of the POINTING table.
visweightscale List of the weight scaling factors to be applied to the individual MSs
forcesingleephemfield make sure that there is only one joint ephemeris for every field in this list

——— examples ———————————————————–

concateovsa(vis=[‘UDB20180102161402.ms’,’UDB20180102173518.ms’], concatvis=’UDB20180102_allday.ms’)
will concatenate ‘UDB20180102161402.ms’ and ‘UDB20180102173518.ms’ into ‘UDB20180102_allday.ms’

	
_info_group_ = 'utility, manipulation'

	

	
_info_desc_ = 'Concatenate several EOVSA visibility data sets.'

	

	
__call__(vis='', concatvis='', datacolumn='corrected', keep_orig_ms=True, cols2rm='model,corrected', freqtol='', dirtol='', respectname=False, timesort=True, copypointing=True, visweightscale=[], forcesingleephemfield='')

	

	
suncasa.suncasatasks.concateovsa.concateovsa

	

suncasa.suncasatasks.importeovsa

Module Contents

Classes

	_importeovsa

	importeovsa ---- Parallelized import EOVSA idb file(s) to a measurement set or multiple measurement set.

Attributes

	_pc

	

	importeovsa

	

	
suncasa.suncasatasks.importeovsa._pc

	

	
class suncasa.suncasatasks.importeovsa._importeovsa

	importeovsa —- Parallelized import EOVSA idb file(s) to a measurement set or multiple measurement set.

Parallelized imports an arbitrary number of EOVSA idb-format data sets into
a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window.

——— parameter descriptions ———————————————

idbfiles Name of input EOVSA idb file(s) or observation time range.
ncpu Number of cpu cores to use
timebin Bin width for time averaging
width Width of output channel relative to MS channel (# to average)
visprefix Prefix of vis names (may include the path).
udb_corr if applying correction to input UDB files before import to MS.
nocreatms If setting nocreatms True, will simulate a model measurement set for the first idb file and copy the model for the rest of idl files in list. If False, will simulate a new measurement set for every idbfile in list.
doconcat If concatenate multi casa measurement sets to one file.
modelms Name of input model measurement set file. If modelms is assigned, no simulation will start.
doscaling If creating a new MS file with the amplitude of visibility data rescaled.
keep_nsclms Keep the no scaling measurement sets
use_exist_udbcorr If use the existed udb_corr results.

——— examples ———————————————————–

Parallelized imports an arbitrary number of EOVSA idb-format data sets into
a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window.

Detailed Keyword arguments:

idbfiles – Name of input EOVSA idb file(s)
default: none. Must be supplied
example: idbfiles = ‘IDB20160524000518’
example: idbfiles=[‘IDB20160524000518’,’IDB20160524000528’]

ncpu – Number of cpu cores to use
default: 8

visprefix – Prefix of vis names (may include the path)
default: none;
example: visprefix=’sun/’]

— Data Selection —

nocreatms – If copying a new MS file instead of create one from MS simulator.
default: False

modelms – Name of the standard Measurement Set. IF modelms is not provided, use
‘/home/user/sjyu/20160531/ms/sun/SUN/SUN_20160531T142234-10m.1s.ms’ as a standard MS.

doconcat – If outputing one single MS file

— Channel averaging parameter —

width – Number of input channels to average to create an output
channel. If a list is given, each bin will apply to one spw in
the selection.
default: 1 => no channel averaging.
options: (int) or [int]

example: chanbin=[2,3] => average 2 channels of 1st selected
spectral window and 3 in the second one.

— Time averaging parameters —

timebin – Bin width for time averaging. When timebin is greater than 0s,
the task will average data in time. Flagged data will be included
in the average calculation, unless the parameter keepflags is set to False.
In this case only partially flagged rows will be used in the average.
default: ‘0s’

	
_info_group_ = 'Import/export'

	

	
_info_desc_ = 'Parallelized import EOVSA idb file(s) to a measurement set or multiple measurement set.'

	

	
__call__(idbfiles='', ncpu=int(1), timebin='0s', width=int(1), visprefix='', udb_corr=True, nocreatms=False, doconcat=False, modelms='', doscaling=False, keep_nsclms=False, use_exist_udbcorr=False)

	

	
suncasa.suncasatasks.importeovsa.importeovsa

	

suncasa.suncasatasks.pimfit

Module Contents

Classes

	_pimfit

	pimfit ---- Fit one or more elliptical Gaussian components on an image region(s)

Attributes

	_pc

	

	pimfit

	

	
suncasa.suncasatasks.pimfit._pc

	

	
class suncasa.suncasatasks.pimfit._pimfit

	pimfit —- Fit one or more elliptical Gaussian components on an image region(s)

——— parameter descriptions ———————————————

imagefiles A list of the input images
ncpu Number of cpu cores to use
doreg True if use vla_prep to register the image
ephemfile emphemeris file generated from vla_prep.read_horizons()
timestamps A list of timestamps of the input images
msinfofile time-dependent phase center information generated from vla_prep.read_msinfo()
box Rectangular region(s) to select in direction plane. See “help par.box” for details. Default is to use the entire direction plane.
region Region selection. See “help par.region” for details. Default is to use the full image.
chans Channels to use. See “help par.chans” for details. Default is to use all channels.
stokes Stokes planes to use. See “help par.stokes” for details. Default is to use first Stokes plane.
mask Mask to use. See help par.mask. Default is none.
includepix Range of pixel values to include for fitting.
excludepix Range of pixel values to exclude for fitting.
residual Name of output residual image.
model Name of output model image.
estimates Name of file containing initial estimates of component parameters.
logfile Name of file to write fit results.
append If logfile exists, append to it if True or overwrite it if False
newestimates File to write fit results which can be used as initial estimates for next run.
complist Name of output component list table.
overwrite Overwrite component list table if it exists?
dooff Also fit a zero level offset? Default is False
offset Initial estimate of zero-level offset. Only used if doff is True. Default is 0.0
fixoffset Keep the zero level offset fixed during fit? Default is False
stretch Stretch the mask if necessary and possible? See help par.stretch
rms RMS to use in calculation of uncertainties. Numeric or valid quantity (record or string). If numeric, it is given units of the input image. If quantity, units must conform to image units. If not positive, the rms of the residual image, in the region of the fit, is used.
noisefwhm Noise correlation beam FWHM. If numeric value, interpreted as pixel widths. If quantity (dictionary, string), it must have angular units.
summary File name to which to write table of fit parameters.

 suncasa.suncasatasks.pmaxfit

suncasa.suncasatasks.pmaxfit

Module Contents

Classes

	_pmaxfit

	pmaxfit ---- Find maximum and do parabolic fit in the sky

Attributes

	_pc

	

	pmaxfit

	

	
suncasa.suncasatasks.pmaxfit._pc

	

	
class suncasa.suncasatasks.pmaxfit._pmaxfit

	pmaxfit —- Find maximum and do parabolic fit in the sky

PARAMETER SUMMARY
imagename Name of the input image
box Rectangular region(s) to select in direction plane. See “help par.box”
for details. Default is to use the entire direction plane.
eg “100, 120, 200, 220, 300, 300, 400, 400” to use two boxes.

OVERVIEW
This application finds the pixel with the maximum value in the region, and then uses function
findsources to generate a Componentlist with one component.

The method returns a dictionary with fours keys, ‘succeeded’, ‘timestamps’, ‘imagenames’
and ‘outputs’. The value of ‘outputs’ is a dictionary representing
a component list reflecting the fit results over multiple channels.
Both the ‘outputs’ dictionaries can be read into a component list tool (default tool is named cl)
using the fromrecord() method for easier inspection using tool methods, eg

FITTING OVER MULTIPLE CHANNELS

For fitting over multiple channels, the result of the previous successful fit is used as
the estimate for the next channel. The number of gaussians fit cannot be varied on a channel
by channel basis. Thus the variation of source structure should be reasonably smooth in
frequency to produce reliable fit results.

——— parameter descriptions ———————————————

imagefiles A list of the input images
ncpu Number of cpu cores to use
box Rectangular region(s) to select in direction plane. See “help par.box” for details. Default is to use the entire direction plane.
width Half-width of fit grid

 suncasa.suncasatasks.ptclean

suncasa.suncasatasks.ptclean

Module Contents

Classes

	_ptclean

	ptclean ---- Parallelized tclean in consecutive time steps

Attributes

	_pc

	

	ptclean

	

	
suncasa.suncasatasks.ptclean._pc

	

	
class suncasa.suncasatasks.ptclean._ptclean

	ptclean —- Parallelized tclean in consecutive time steps

Parallelized clean in consecutive time steps. Packed over CASA tclean.

——— parameter descriptions ———————————————

	vis Name(s) of input visibility file(s)
	default: none;
example: vis=’ngc5921.ms’

vis=[‘ngc5921a.ms’,’ngc5921b.ms’]; multiple MSes

imageprefix Prefix of output image names (usually useful in defining the output path)
imagesuffix Suffix of output image names (usually useful in specifyting the image type, version, etc.)
ncpu Number of cpu cores to use
twidth Number of time pixels to average
doreg True if use vla_prep to register the image
usephacenter True if use the phacenter information from the measurement set (e.g., VLA); False to assume the phase center is at the solar disk center (EOVSA)
reftime Reference time of the J2000 coordinates associated with the ephemeris target. e.g., “2012/03/03/12:00”. This is used for helioimage2fits.py to find the solar x y offset in order to register the image. If not set, use the actual timerange of the image (default)
toTb True if convert to brightness temperature
sclfactor scale the brightness temperature up by its value
subregion The name of a CASA region string

The name of a CASA image or region file or region string. Only locations within the region will
output to the fits file.
If regions specified fall completely outside of the image, ptclean will throw an error.

Manual mask options/examples :

subregion=’box[[224pix,224pix],[288pix,288pix]]’ : A CASA region string.

docompress True if compress the output fits files
overwrite True if overwrite the image
selectdata Enable data selection parameters.
field to image or mosaic. Use field id(s) or name(s).

[‘go listobs’ to obtain the list id’s or names]

	default: ‘’= all fields
	If field string is a non-negative integer, it is assumed to
be a field index otherwise, it is assumed to be a

field name

field=’0~2’; field ids 0,1,2
field=’0,4,5~7’; field ids 0,4,5,6,7
field=’3C286,3C295’; field named 3C286 and 3C295
field = ‘3,4C*’; field id 3, all names starting with 4C
For multiple MS input, a list of field strings can be used:
field = [‘0~2’,’0~4’]; field ids 0-2 for the first MS and 0-4

for the second

field = ‘0~2’; field ids 0-2 for all input MSes

	spw l window/channels
	
	NOTE: channels de-selected here will contain all zeros if
	selected by the parameter mode subparameters.

	default: ‘’=all spectral windows and channels
	spw=’0~2,4’; spectral windows 0,1,2,4 (all channels)
spw=’0:5~61’; spw 0, channels 5 to 61
spw=’<2’; spectral windows less than 2 (i.e. 0,1)
spw=’0,10,3:3~45’; spw 0,10 all channels, spw 3,

channels 3 to 45.

spw=’0~2:2~6’; spw 0,1,2 with channels 2 through 6 in each.
For multiple MS input, a list of spw strings can be used:
spw=[‘0’,’0~3’]; spw ids 0 for the first MS and 0-3 for the second
spw=’0~3’ spw ids 0-3 for all input MS
spw=’3:10~20;50~60’ for multiple channel ranges within spw id 3
spw=’3:10~20;50~60,4:0~30’ for different channel ranges for spw ids 3 and 4
spw=’0:0~10,1:20~30,2:1;2;3’; spw 0, channels 0-10,

spw 1, channels 20-30, and spw 2, channels, 1,2 and 3

spw=’1~4;6:15~48’ for channels 15 through 48 for spw ids 1,2,3,4 and 6

timerange Range of time to select from data

default: ‘’ (all); examples,
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
Note: if YYYY/MM/DD is missing date defaults to first

day in data set

timerange=’09:14:0~09:54:0’ picks 40 min on first day
timerange=’25:00:00~27:30:00’ picks 1 hr to 3 hr

30min on NEXT day

	timerange=’09:44:00’ pick data within one integration
	of time

timerange=’> 10:24:00’ data after this time
For multiple MS input, a list of timerange strings can be
used:
timerange=[‘09:14:0~09:54:0’,’> 10:24:00’]
timerange=’09:14:0~09:54:0’’; apply the same timerange for

all input MSes

	uvrange Select data within uvrange (default unit is meters)
	default: ‘’ (all); example:
uvrange=’0~1000klambda’; uvrange from 0-1000 kilo-lambda
uvrange=’> 4klambda’;uvranges greater than 4 kilo lambda
For multiple MS input, a list of uvrange strings can be
used:
uvrange=[‘0~1000klambda’,’100~1000klamda’]
uvrange=’0~1000klambda’; apply 0-1000 kilo-lambda for all

input MSes

antenna Select data based on antenna/baseline

default: ‘’ (all)
If antenna string is a non-negative integer, it is

assumed to be an antenna index, otherwise, it is
considered an antenna name.

	antenna=’5&6’; baseline between antenna index 5 and
	index 6.

	antenna=’VA05&VA06’; baseline between VLA antenna 5
	and 6.

antenna=’5&6;7&8’; baselines 5-6 and 7-8
antenna=’5’; all baselines with antenna index 5
antenna=’05’; all baselines with antenna number 05

(VLA old name)

	antenna=’5,6,9’; all baselines with antennas 5,6,9
	index number

For multiple MS input, a list of antenna strings can be
used:
antenna=[‘5’,’5&6’];
antenna=’5’; antenna index 5 for all input MSes
antenna=’!DV14’; use all antennas except DV14

scan Scan number range

default: ‘’ (all)
example: scan=’1~5’
For multiple MS input, a list of scan strings can be used:
scan=[‘0~100’,’10~200’]
scan=’0~100; scan ids 0-100 for all input MSes

	observation Observation ID range
	default: ‘’ (all)
example: observation=’1~5’

intent Scan Intent(s)

default: ‘’ (all)
example: intent=’TARGET_SOURCE’
example: intent=’TARGET_SOURCE1,TARGET_SOURCE2’
example: intent=’TARGET_POINTING*’

	datacolumn Data column to image (data or observed, corrected)
	default:’data’
(If ‘corrected’ does not exist, it will use ‘data’ instead)

	imsize Number of pixels
	
	exampleimsize = [350,250]
	imsize = 500 is equivalent to [500,500]

To take proper advantage of internal optimized FFT routines, the
number of pixels must be even and factorizable by 2,3,5,7 only.

	cell Cell size
	example: cell=[‘0.5arcsec,’0.5arcsec’] or
cell=[‘1arcmin’, ‘1arcmin’]
cell = ‘1arcsec’ is equivalent to [‘1arcsec’,’1arcsec’]

	phasecenter Phase center of the image (string or field id); if the phasecenter is the name known major solar system object (‘MERCURY’, ‘VENUS’, ‘MARS’, ‘JUPITER’, ‘SATURN’, ‘URANUS’, ‘NEPTUNE’, ‘PLUTO’, ‘SUN’, ‘MOON’) or is an ephemerides table then that source is tracked and the background sources get smeared. There is a special case, when phasecenter=’TRACKFIELD’, which will use the ephemerides or polynomial phasecenter in the FIELD table of the MS’s as the source center to track.
	
	example: phasecenter=6
	phasecenter=’J2000 19h30m00 -40d00m00’
phasecenter=’J2000 292.5deg -40.0deg’
phasecenter=’J2000 5.105rad -0.698rad’
phasecenter=’ICRS 13:05:27.2780 -049.28.04.458’

phasecenter=’myComet_ephem.tab’
phasecenter=’MOON’
phasecenter=’TRACKFIELD’

	stokes Stokes Planes to make
	
	default=’I’; example: stokes=’IQUV’;
	Options: ‘I’,’Q’,’U’,’V’,’IV’,’QU’,’IQ’,’UV’,’IQUV’,’RR’,’LL’,’XX’,’YY’,’RRLL’,’XXYY’,’pseudoI’

	NoteDue to current internal code constraints, if any correlation pair
	is flagged, by default, no data for that row in the MS will be used.
So, in an MS with XX,YY, if only YY is flagged, neither a
Stokes I image nor an XX image can be made from those data points.
In such a situation, please split out only the unflagged correlation into
a separate MS.

	NoteThe ‘pseudoI’ option is a partial solution, allowing Stokes I imaging
	when either of the parallel-hand correlations are unflagged.

The remaining constraints shall be removed (where logical) in a future release.

	projection Coordinate projection
	Examples : SIN, NCP
A list of supported (but untested) projections can be found here :
http://casa.nrao.edu/active/docs/doxygen/html/classcasa_1_1Projection.html#a3d5f9ec787e4eabdce57ab5edaf7c0cd

startmodel Name of starting model image

The contents of the supplied starting model image will be
copied to the imagename.model before the run begins.

example : startmodel = ‘singledish.im’

For deconvolver=’mtmfs’, one image per Taylor term must be provided.
example : startmodel = [‘try.model.tt0’, ‘try.model.tt1’]

	startmodel = [‘try.model.tt0’] will use a starting model only
	for the zeroth order term.

	startmodel = [‘’,’try.model.tt1’] will use a starting model only
	for the first order term.

This starting model can be of a different image shape and size from
what is currently being imaged. If so, an image regrid is first triggered
to resample the input image onto the target coordinate system.

A common usage is to set this parameter equal to a single dish image

Negative components in the model image will be included as is.

	[NoteIf an error occurs during image resampling/regridding,
	please try using task imregrid to resample the starting model
image onto a CASA image with the target shape and
coordinate system before supplying it via startmodel]

specmode Spectral definition mode (mfs,cube,cubedata, cubesource)

	mode=’mfs’Continuum imaging with only one output image channel.
	(mode=’cont’ can also be used here)

	mode=’cube’Spectral line imaging with one or more channels
	
Parameters start, width,and nchan define the spectral
coordinate system and can be specified either in terms
of channel numbers, frequency or velocity in whatever
spectral frame is specified in ‘outframe’.
All internal and output images are made with outframe as the
base spectral frame. However imaging code internally uses the fixed
spectral frame, LSRK for automatic internal software
Doppler tracking so that a spectral line observed over an
extended time range will line up appropriately.
Therefore the output images have additional spectral frame conversion
layer in LSRK on the top the base frame.

	(NoteEven if the input parameters are specified in a frame
	other than LSRK, the viewer still displays spectral
axis in LSRK by default because of the conversion frame
layer mentioned above. The viewer can be used to relabel
the spectral axis in any desired frame - via the spectral
reference option under axis label properties in the
data display options window.)

	mode=’cubedata’Spectral line imaging with one or more channels
	There is no internal software Doppler tracking so
a spectral line observed over an extended time range
may be smeared out in frequency. There is strictly
no valid spectral frame with which to label the output

images, but they will list the frame defined in the MS.

mode=’cubesource’: Spectral line imaging while
tracking moving source (near field or solar system
objects). The velocity of the source is accounted
and the frequency reported is in the source frame.
As there is not SOURCE frame defined,
the frame reported will be REST (as it may not be
in the rest frame emission region may be
moving w.r.t the systemic velocity frame)

reffreq Reference frequency of the output image coordinate system

Example : reffreq=’1.5GHz’ as a string with units.

By default, it is calculated as the middle of the selected frequency range.

For deconvolver=’mtmfs’ the Taylor expansion is also done about
this specified reference frequency.

	nchan Number of channels in the output image
	For default (=-1), the number of channels will be automatically determined
based on data selected by ‘spw’ with ‘start’ and ‘width’.
It is often easiest to leave nchan at the default value.
example: nchan=100

	start First channel (e.g. start=3,start=’1.1GHz’,start=’15343km/s’)
	of output cube images specified by data channel number (integer),
velocity (string with a unit), or frequency (string with a unit).
Default:’’; The first channel is automatically determined based on
the ‘spw’ channel selection and ‘width’.
When the channel number is used along with the channel selection

in ‘spw’ (e.g. spw=’0:6~100’),

‘start’ channel number is RELATIVE (zero-based) to the selected
channels in ‘spw’. So for the above example,
start=1 means that the first image channel is the second selected
data channel, which is channel 7.
For specmode=’cube’, when velocity or frequency is used it is
interpreted with the frame defined in outframe. [The parameters of
the desired output cube can be estimated by using the ‘transform’
functionality of ‘plotms’]
examples: start=’5.0km/s’; 1st channel, 5.0km/s in outframe

start=’22.3GHz’; 1st channel, 22.3GHz in outframe

	width Channel width (e.g. width=2,width=’0.1MHz’,width=’10km/s’) of output cube images
	specified by data channel number (integer), velocity (string with a unit), or
or frequency (string with a unit).
Default:’’; data channel width
The sign of width defines the direction of the channels to be incremented.
For width specified in velocity or frequency with ‘-’ in front gives image channels in
decreasing velocity or frequency, respectively.
For specmode=’cube’, when velocity or frequency is used it is interpreted with
the reference frame defined in outframe.
examples: width=’2.0km/s’; results in channels with increasing velocity

width=’-2.0km/s’; results in channels with decreasing velocity
width=’40kHz’; results in channels with increasing frequency
width=-2; results in channels averaged of 2 data channels incremented from

high to low channel numbers

	outframe Spectral reference frame in which to interpret ‘start’ and ‘width’
	
Options: ‘’,’LSRK’,’LSRD’,’BARY’,’GEO’,’TOPO’,’GALACTO’,’LGROUP’,’CMB’
example: outframe=’bary’ for Barycentric frame

REST – Rest frequency
LSRD – Local Standard of Rest (J2000)

– as the dynamical definition (IAU, [9,12,7] km/s in galactic coordinates)

	LSRK – LSR as a kinematical (radio) definition
	– 20.0 km/s in direction ra,dec = [270,+30] deg (B1900.0)

BARY – Barycentric (J2000)
GEO — Geocentric
TOPO – Topocentric
GALACTO – Galacto centric (with rotation of 220 km/s in direction l,b = [90,0] deg.
LGROUP – Local group velocity – 308km/s towards l,b = [105,-7] deg (F. Ghigo)

CMB – CMB velocity – 369.5km/s towards l,b = [264.4, 48.4] deg (F. Ghigo)
DEFAULT = LSRK

	veltype Velocity type (radio, z, ratio, beta, gamma, optical)
	For start and/or width specified in velocity, specifies the velocity definition
Options: ‘radio’,’optical’,’z’,’beta’,’gamma’,’optical’
NOTE: the viewer always defaults to displaying the ‘radio’ frame,

but that can be changed in the position tracking pull down.

The different types (with F = f/f0, the frequency ratio), are:

Z = (-1 + 1/F)

RATIO = (F) *
RADIO = (1 - F)
OPTICAL == Z
BETA = ((1 - F2)/(1 + F2))
GAMMA = ((1 + F2)/2F) *
RELATIVISTIC == BETA (== v/c)
DEFAULT == RADIO
Note that the ones with an ‘*’ have no real interpretation
(although the calculation will proceed) if given as a velocity.

	restfreq List of rest frequencies or a rest frequency in a string.
	Specify rest frequency to use for output image.
*Currently it uses the first rest frequency in the list for translation of
velocities. The list will be stored in the output images.
Default: []; look for the rest frequency stored in the MS, if not available,
use center frequency of the selected channels
examples: restfreq=[‘1.42GHz’]

restfreq=’1.42GHz’

interpolation Spectral interpolation (nearest,linear,cubic)

Interpolation rules to use when binning data channels onto image channels
and evaluating visibility values at the centers of image channels.

	Note‘linear’ and ‘cubic’ interpolation requires data points on both sides of
	each image frequency. Errors are therefore possible at edge channels, or near
flagged data channels. When image channel width is much larger than the data
channel width there is nothing much to be gained using linear or cubic thus
not worth the extra computation involved.

gridder Gridding options (standard, wproject, widefield, mosaic, awproject)

The following options choose different gridding convolution
functions for the process of convolutional resampling of the measured
visibilities onto a regular uv-grid prior to an inverse FFT.
Model prediction (degridding) also uses these same functions.
Several wide-field effects can be accounted for via careful choices of
convolution functions. Gridding (degridding) runtime will rise in
proportion to the support size of these convolution functions (in uv-pixels).

standard : Prolate Spheroid with 3x3 uv pixel support size

[This mode can also be invoked using ‘ft’ or ‘gridft’]

	wprojectW-Projection algorithm to correct for the widefield
	

non-coplanar baseline effect. [Cornwell et.al 2008]

wprojplanes is the number of distinct w-values at
which to compute and use different gridding convolution
functions (see help for wprojplanes).

	Convolution function support size can range
	from 5x5 to few 100 x few 100.

[This mode can also be invoked using ‘wprojectft’]

widefield : Facetted imaging with or without W-Projection per facet.

A set of facets x facets subregions of the specified image
are gridded separately using their respective phase centers
(to minimize max W). Deconvolution is done on the joint
full size image, using a PSF from the first subregion.

wprojplanes=1 : standard prolate spheroid gridder per facet.
wprojplanes > 1 : W-Projection gridder per facet.
nfacets=1, wprojplanes > 1 : Pure W-Projection and no facetting
nfacets=1, wprojplanes=1 : Same as standard,ft,gridft

A combination of facetting and W-Projection is relevant only for
very large fields of view.

	mosaicA-Projection with azimuthally symmetric beams without
	
sidelobes, beam rotation or squint correction.
Gridding convolution functions per visibility are computed
from FTs of PB models per antenna.
This gridder can be run on single fields as well as mosaics.

VLA : PB polynomial fit model (Napier and Rots, 1982)
EVLA : PB polynomial fit model (Perley, 2015)
ALMA : Airy disks for a 10.7m dish (for 12m dishes) and

6.25m dish (for 7m dishes) each with 0.75m
blockages (Hunter/Brogan 2011). Joint mosaic
imaging supports heterogeneous arrays for ALMA.

Typical gridding convolution function support sizes are
between 7 and 50 depending on the desired
accuracy (given by the uv cell size or image field of view).

[This mode can also be invoked using ‘mosaicft’ or ‘ftmosaic’]

	awprojectA-Projection with azimuthally asymmetric beams and
	

including beam rotation, squint correction,
conjugate frequency beams and W-projection.
[Bhatnagar et.al, 2008]

Gridding convolution functions are computed from
aperture illumination models per antenna and optionally
combined with W-Projection kernels and a prolate spheroid.
This gridder can be run on single fields as well as mosaics.

	VLAUses ray traced model (VLA and EVLA) including feed
	leg and subreflector shadows, off-axis feed location
(for beam squint and other polarization effects), and
a Gaussian fit for the feed beams (Ref: Brisken 2009)

	ALMASimilar ray-traced model as above (but the correctness
	of its polarization properties remains un-verified).

Typical gridding convolution function support sizes are
between 7 and 50 depending on the desired
accuracy (given by the uv cell size or image field of view).
When combined with W-Projection they can be significantly larger.

[This mode can also be invoked using ‘awprojectft’]

	imagemosaic(untested implementation)
	Grid and iFT each pointing separately and combine the
images as a linear mosaic (weighted by a PB model) in
the image domain before a joint minor cycle.

VLA/ALMA PB models are same as for gridder=’mosaicft’

—— Notes on PB models :

	
	Several different sources of PB models are used in the modes
	listed above. This is partly for reasons of algorithmic flexibility
and partly due to the current lack of a common beam model
repository or consensus on what beam models are most appropriate.

	
	For ALMA and gridder=’mosaic’, ray-traced (TICRA) beams
	are also available via the vpmanager tool.
For example, call the following before the tclean run.

vp.setpbimage(telescope=”ALMA”,
compleximage=’/home/casa/data/trunk/alma/responses/ALMA_0_DV__0_0_360_0_45_90_348.5_373_373_GHz_ticra2007_VP.im’,
antnames=[‘DV’+’%02d’%k for k in range(25)])
vp.saveastable(‘mypb.tab’)
Then, supply vptable=’mypb.tab’ to tclean.
(Currently this will work only for non-parallel runs)

—— Note on PB masks :

In tclean, A-Projection gridders (mosaic and awproject) produce a
.pb image and use the ‘pblimit’ subparameter to decide normalization
cutoffs and construct an internal T/F mask in the .pb and .image images.
However, this T/F mask cannot directly be used during deconvolution
(which needs a 1/0 mask). There are two options for making a pb based
deconvolution mask.

– Run tclean with niter=0 to produce the .pb, construct a 1/0 image

with the desired threshold (using ia.open(‘newmask.im’);
ia.calc(‘iif(“xxx.pb”>0.3,1.0,0.0)’);ia.close() for example),
and supply it via the ‘mask’ parameter in a subsequent run
(with calcres=F and calcpsf=F to restart directly from the minor cycle).

– Run tclean with usemask=’pb’ for it to automatically construct

a 1/0 mask from the internal T/F mask from .pb at a fixed 0.2 threshold.

—– Making PBs for gridders other than mosaic,awproject

After the PSF generation, a PB is constructed using the same
models used in gridder=’mosaic’ but just evaluated in the image
domain without consideration to weights.

facets Number of facets on a side

A set of (facets x facets) subregions of the specified image
are gridded separately using their respective phase centers
(to minimize max W). Deconvolution is done on the joint
full size image, using a PSF from the first subregion/facet.

chanchunks Number of channel chunks to grid separately

For large image cubes, the gridders can run into memory limits
as they loop over all available image planes for each row of data
accessed. To prevent this problem, we can grid subsets of channels
in sequence so that at any given time only part of the image cube
needs to be loaded into memory. This parameter controls the
number of chunks to split the cube into.

Example : chanchunks = 4

	[This feature is experimental and may have restrictions on how
	chanchunks is to be chosen. For now, please pick chanchunks so
that nchan/chanchunks is an integer.]

	wprojplanes Number of distinct w-values at which to compute and use different
	gridding convolution functions for W-Projection

An appropriate value of wprojplanes depends on the presence/absence
of a bright source far from the phase center, the desired dynamic
range of an image in the presence of a bright far out source,
the maximum w-value in the measurements, and the desired trade off
between accuracy and computing cost.

As a (rough) guide, VLA L-Band D-config may require a
value of 128 for a source 30arcmin away from the phase
center. A-config may require 1024 or more. To converge to an
appropriate value, try starting with 128 and then increasing
it if artifacts persist. W-term artifacts (for the VLA) typically look
like arc-shaped smears in a synthesis image or a shift in source
position between images made at different times. These artifacts
are more pronounced the further the source is from the phase center.

There is no harm in simply always choosing a large value (say, 1024)
but there will be a significant performance cost to doing so, especially
for gridder=’awproject’ where it is combined with A-Projection.

wprojplanes=-1 is an option for gridder=’widefield’ or ‘wproject’
in which the number of planes is automatically computed.

vptable vpmanager

	vptable=””Choose default beams for different telescopes
	ALMA : Airy disks
EVLA : old VLA models.

Other primary beam models can be chosen via the vpmanager tool.

Step 1 : Set up the vpmanager tool and save its state in a table

vp.setpbpoly(telescope=’EVLA’, coeff=[1.0, -1.529e-3, 8.69e-7, -1.88e-10])
vp.saveastable(‘myvp.tab’)

Step 2 : Supply the name of that table in tclean.

tclean(….., vptable=’myvp.tab’,….)

Please see the documentation for the vpmanager for more details on how to
choose different beam models. Work is in progress to update the defaults
for EVLA and ALMA.

	NoteAWProjection currently does not use this mechanism to choose
	beam models. It instead uses ray-traced beams computed from
parameterized aperture illumination functions, which are not
available via the vpmanager. So, gridder=’awproject’ does not allow
the user to set this parameter.

usepointing Use the pointing table to determine where the beam are for mosaic gridder; if False then phasecenters of the fields selected are used to determine direction of each mosaic pointing.
mosweight When doing Brigg’s style weighting (including uniform) to perform the weight density calculation for each field indepedently if True. If False the weight density is calculated from the average uv distribution of all the fields.
aterm Use aperture illumination functions during gridding

This parameter turns on the A-term of the AW-Projection gridder.
Gridding convolution functions are constructed from aperture illumination
function models of each antenna.

psterm Use prolate spheroidal during gridding
wbawp Use frequency dependent A-terms

Scale aperture illumination functions appropriately with frequency
when gridding and combining data from multiple channels.

conjbeams Use conjugate frequency for wideband A-terms

While gridding data from one frequency channel, choose a
convolution function from a ‘conjugate’ frequency such that
the resulting baseline primary beam is approximately constant
across frequency. For a system in which the primary beam scales
with frequency, this step will eliminate instrumental spectral
structure from the measured data and leave only the sky spectrum
for the minor cycle to model and reconstruct [Bhatnagar et.al,2013].

As a rough guideline for when this is relevant, a source at the half
power point of the PB at the center frequency will see an artificial
spectral index of -1.4 due to the frequency dependence of the PB
[Sault and Wieringa, 1994]. If left uncorrected during gridding, this
spectral structure must be modeled in the minor cycle (using the
mtmfs algorithm) to avoid dynamic range limits (of a few hundred
for a 2:1 bandwidth).

cfcache Convolution function cache directory name

Name of a directory in which to store gridding convolution functions.
This cache is filled at the beginning of an imaging run. This step can be time
consuming but the cache can be reused across multiple imaging runs that
use the same image parameters (cell size, field-of-view, spectral data
selections, etc).

By default, cfcache = imagename + ‘.cf’

	computepastep At what parallactic angle interval to recompute aperture
	illumination functions (deg)

This parameter controls the accuracy of the aperture illumination function
used with AProjection for alt-az mount dishes where the AIF rotates on the
sky as the synthesis image is built up.

	rotatepastep At what parallactic angle interval to rotate nearest
	aperture illumination function (deg)

Instead of recomputing the AIF for every timestep’s parallactic angle,
the nearest existing AIF is picked and rotated in steps of this amount.

For example, computepastep=360.0 and rotatepastep=5.0 will compute
the AIFs at only the starting parallactic angle and all other timesteps will
use a rotated version of that AIF at the nearest 5.0 degree point.

pblimit PB gain level at which to cut off normalizations

Divisions by .pb during normalizations have a cut off at a .pb gain
level given by pblimit. Outside this limit, image values are set to zero.
Additionally, by default, an internal T/F mask is applied to the .pb, .image and
.residual images to mask out (T) all invalid pixels outside the pblimit area.

	NoteThis internal T/F mask cannot be used as a deconvolution mask.
	To do so, please follow the steps listed above in the Notes for the
‘gridder’ parameter.

	NoteTo prevent the internal T/F mask from appearing in anything other
	than the .pb and .image.pbcor images, ‘pblimit’ can be set to a
negative number. The absolute value will still be used as a valid ‘pblimit’.
A tclean restart using existing output images on disk that already
have this T/F mask in the .residual and .image but only pblimit set
to a negative value, will remove this mask after the next major cycle.

normtype Normalization type (flatnoise, flatsky, pbsquare)

Gridded (and FT’d) images represent the PB-weighted sky image.
Qualitatively it can be approximated as two instances of the PB
applied to the sky image (one naturally present in the data
and one introduced during gridding via the convolution functions).

xxx.weight : Weight image approximately equal to sum (square (pb))
xxx.pb : Primary beam calculated as sqrt (xxx.weight)

	normtype=’flatnoise’Divide the raw image by sqrt(.weight) so that
	the input to the minor cycle represents the
product of the sky and PB. The noise is ‘flat’
across the region covered by each PB.

	normtype=’flatsky’Divide the raw image by .weight so that the input
	to the minor cycle represents only the sky.
The noise is higher in the outer regions of the
primary beam where the sensitivity is low.

	normtype=’pbsquare’No normalization after gridding and FFT.
	The minor cycle sees the sky times pb square

deconvolver Name of minor cycle algorithm (hogbom,clark,multiscale,mtmfs,mem,clarkstokes)

Each of the following algorithms operate on residual images and psfs
from the gridder and produce output model and restored images.
Minor cycles stop and a major cycle is triggered when cyclethreshold
or cycleniter are reached. For all methods, components are picked from
the entire extent of the image or (if specified) within a mask.

	hogbomAn adapted version of Hogbom Clean [Hogbom, 1974]
	
	Find the location of the peak residual

	Add this delta function component to the model image

	Subtract a scaled and shifted PSF of the same size as the image
from regions of the residual image where the two overlap.

	Repeat

	clarkAn adapted version of Clark Clean [Clark, 1980]
	

	Find the location of max(I^2+Q^2+U^2+V^2)

	Add delta functions to each stokes plane of the model image

	Subtract a scaled and shifted PSF within a small patch size
from regions of the residual image where the two overlap.

	After several iterations trigger a Clark major cycle to subtract
components from the visibility domain, but without de-gridding.

	Repeat

	(Note‘clark’ maps to imagermode=’’ in the old clean task.
	
	‘clark_exp’ is another implementation that maps to
	imagermode=’mosaic’ or ‘csclean’ in the old clean task
but the behavior is not identical. For now, please
use deconvolver=’hogbom’ if you encounter problems.)

clarkstokes : Clark Clean operating separately per Stokes plane

(Note : ‘clarkstokes_exp’ is an alternate version. See above.)

	multiscaleMultiScale Clean [Cornwell, 2008]
	
	Smooth the residual image to multiple scale sizes

	Find the location and scale at which the peak occurs

	Add this multiscale component to the model image

	Subtract a scaled,smoothed,shifted PSF (within a small
patch size per scale) from all residual images

	Repeat from step 2

	mtmfsMulti-term (Multi Scale) Multi-Frequency Synthesis [Rau and Cornwell, 2011]
	
	Smooth each Taylor residual image to multiple scale sizes

	Solve a NTxNT system of equations per scale size to compute
Taylor coefficients for components at all locations

	
	Compute gradient chi-square and pick the Taylor coefficients
	and scale size at the location with maximum reduction in
chi-square

	Add multi-scale components to each Taylor-coefficient
model image

	Subtract scaled,smoothed,shifted PSF (within a small patch size
per scale) from all smoothed Taylor residual images

	Repeat from step 2

	memMaximum Entropy Method [Cornwell and Evans, 1985]
	
	Iteratively solve for values at all individual pixels via the
MEM method. It minimizes an objective function of

chi-square plus entropy (here, a measure of difference

between the current model and a flat prior model).

	(NoteThis MEM implementation is not very robust.
	Improvements will be made in the future.)

	scales List of scale sizes (in pixels) for multi-scale and mtmfs algorithms.
	–> scales=[0,6,20]
This set of scale sizes should represent the sizes
(diameters in units of number of pixels)
of dominant features in the image being reconstructed.

The smallest scale size is recommended to be 0 (point source),
the second the size of the synthesized beam and the third 3-5
times the synthesized beam, etc. For example, if the synthesized
beam is 10” FWHM and cell=2”,try scales = [0,5,15].

For numerical stability, the largest scale must be
smaller than the image (or mask) size and smaller than or
comparable to the scale corresponding to the lowest measured
spatial frequency (as a scale size much larger than what the
instrument is sensitive to is unconstrained by the data making
it harder to recovery from errors during the minor cycle).

nterms Number of Taylor coefficients in the spectral model

	nterms=1 : Assume flat spectrum source

	nterms=2 : Spectrum is a straight line with a slope

	nterms=N : A polynomial of order N-1

From a Taylor expansion of the expression of a power law, the
spectral index is derived as alpha = taylorcoeff_1 / taylorcoeff_0

Spectral curvature is similarly derived when possible.

The optimal number of Taylor terms depends on the available
signal to noise ratio, bandwidth ratio, and spectral shape of the
source as seen by the telescope (sky spectrum x PB spectrum).

nterms=2 is a good starting point for wideband EVLA imaging
and the lower frequency bands of ALMA (when fractional bandwidth
is greater than 10%) and if there is at least one bright source for
which a dynamic range of greater than few 100 is desired.

Spectral artifacts for the VLA often look like spokes radiating out from
a bright source (i.e. in the image made with standard mfs imaging).
If increasing the number of terms does not eliminate these artifacts,
check the data for inadequate bandpass calibration. If the source is away
from the pointing center, consider including wide-field corrections too.

	(NoteIn addition to output Taylor coefficient images .tt0,.tt1,etc
	images of spectral index (.alpha), an estimate of error on
spectral index (.alpha.error) and spectral curvature (.beta,
if nterms is greater than 2) are produced.
- These alpha, alpha.error and beta images contain

internal T/F masks based on a threshold computed
as peakresidual/10. Additional masking based on

.alpha/.alpha.error may be desirable.

	.alpha.error is a purely empirical estimate derived
from the propagation of error during the division of
two noisy numbers (alpha = xx.tt1/xx.tt0) where the
‘error’ on tt1 and tt0 are simply the values picked from
the corresponding residual images. The absolute value
of the error is not always accurate and it is best to interpret
the errors across the image only in a relative sense.)

smallscalebias A numerical control to bias the solution towards smaller scales.

The peak from each scale’s smoothed residual is
multiplied by (1 - smallscalebias * scale/maxscale)
to increase or decrease the amplitude relative to other scales,
before the scale with the largest peak is chosen.

	smallscalebias=0.6 (default) applies a slight bias towards small
	scales, ranging from 1.0 for a point source to
0.4 for the largest scale size

Values larger than 0.6 will bias the solution towards smaller scales.
Values smaller than 0.6 will tend towards giving all scales equal weight.

restoration e.

Construct a restored image : imagename.image by convolving the model
image with a clean beam and adding the residual image to the result.
If a restoringbeam is specified, the residual image is also
smoothed to that target resolution before adding it in.

If a .model does not exist, it will make an empty one and create
the restored image from the residuals (with additional smoothing if needed).
With algorithm=’mtmfs’, this will construct Taylor coefficient maps from
the residuals and compute .alpha and .alpha.error.

restoringbeam ize to use.

	restoringbeam=’’ or [‘’]
A Gaussian fitted to the PSF main lobe (separately per image plane).

	restoringbeam=’10.0arcsec’
Use a circular Gaussian of this width for all planes

	restoringbeam=[‘8.0arcsec’,’10.0arcsec’,’45deg’]
Use this elliptical Gaussian for all planes

	restoringbeam=’common’
Automatically estimate a common beam shape/size appropriate for
all planes.

	NoteFor any restoring beam different from the native resolution
	the model image is convolved with the beam and added to
residuals that have been convolved to the same target resolution.

pbcor the output restored image

A new image with extension .image.pbcor will be created from
the evaluation of .image / .pb for all pixels above the specified pblimit.

	NoteStand-alone PB-correction can be triggered by re-running
	tclean with the appropriate imagename and with
niter=0, calcpsf=False, calcres=False, pbcor=True, vptable=’vp.tab’
(where vp.tab is the name of the vpmanager file.

See the inline help for the ‘vptable’ parameter)

	NoteMulti-term PB correction that includes a correction for the
	spectral index of the PB has not been enabled for the 4.7 release.
Please use the widebandpbcor task instead.
(Wideband PB corrections are required when the amplitude of the

brightest source is known accurately enough to be sensitive
to the difference in the PB gain between the upper and lower
end of the band at its location. As a guideline, the artificial spectral
index due to the PB is -1.4 at the 0.5 gain level and less than -0.2
at the 0.9 gain level at the middle frequency)

outlierfile Name of outlier-field image definitions

A text file containing sets of parameter=value pairs,
one set per outlier field.

Example : outlierfile=’outs.txt’

Contents of outs.txt :

imagename=tst1
nchan=1
imsize=[80,80]
cell=[8.0arcsec,8.0arcsec]
phasecenter=J2000 19:58:40.895 +40.55.58.543
mask=circle[[40pix,40pix],10pix]

imagename=tst2
nchan=1
imsize=[100,100]
cell=[8.0arcsec,8.0arcsec]
phasecenter=J2000 19:58:40.895 +40.56.00.000
mask=circle[[60pix,60pix],20pix]

The following parameters are currently allowed to be different between
the main field and the outlier fields (i.e. they will be recognized if found
in the outlier text file). If a parameter is not listed, the value is picked from
what is defined in the main task input.

imagename, imsize, cell, phasecenter, startmodel, mask
specmode, nchan, start, width, nterms, reffreq,
gridder, deconvolver, wprojplanes

	Note‘specmode’ is an option, so combinations of mfs and cube
	
for different image fields, for example, are supported.

	‘deconvolver’ and ‘gridder’ are also options that allow different
	imaging or deconvolution algorithm per image field.

For example, multiscale with wprojection and 16 w-term planes
on the main field and mtmfs with nterms=3 and wprojection
with 64 planes on a bright outlier source for which the frequency
dependence of the primary beam produces a strong effect that
must be modeled. The traditional alternative to this approach is
to first image the outlier, subtract it out of the data (uvsub) and
then image the main field.

	NoteIf you encounter a use-case where some other parameter needs
	to be allowed in the outlier file (and it is logical to do so), please
send us feedback. The above is an initial list.

weighting Weighting scheme (natural,uniform,briggs,superuniform,radial)

During gridding of the dirty or residual image, each visibility value is
multiplied by a weight before it is accumulated on the uv-grid.
The PSF’s uv-grid is generated by gridding only the weights (weightgrid).

	weighting=’natural’Gridding weights are identical to the data weights
	from the MS. For visibilities with similar data weights,
the weightgrid will follow the sample density
pattern on the uv-plane. This weighting scheme
provides the maximum imaging sensitivity at the
expense of a possibly fat PSF with high sidelobes.
It is most appropriate for detection experiments
where sensitivity is most important.

	weighting=’uniform’Gridding weights per visibility data point are the
	original data weights divided by the total weight of
all data points that map to the same uv grid cell :
‘ data_weight / total_wt_per_cell ‘.

The weightgrid is as close to flat as possible resulting
in a PSF with a narrow main lobe and suppressed
sidelobes. However, since heavily sampled areas of
the uv-plane get down-weighted, the imaging
sensitivity is not as high as with natural weighting.
It is most appropriate for imaging experiments where
a well behaved PSF can help the reconstruction.

	weighting=’briggs’Gridding weights per visibility data point are given by
	‘data_weight / (A / total_wt_per_cell + B) ‘ where
A and B vary according to the ‘robust’ parameter.

robust = -2.0 maps to A=1,B=0 or uniform weighting.
robust = +2.0 maps to natural weighting.
(robust=0.5 is equivalent to robust=0.0 in AIPS IMAGR.)

Robust/Briggs weighting generates a PSF that can
vary smoothly between ‘natural’ and ‘uniform’ and
allow customized trade-offs between PSF shape and
imaging sensitivity.

	weighting=’superuniform’This is similar to uniform weighting except that
	
the total_wt_per_cell is replaced by the
total_wt_within_NxN_cells around the uv cell of
interest. (N = subparameter ‘npixels’)

This method tends to give a PSF with inner
sidelobes that are suppressed as in uniform
weighting but with far-out sidelobes closer to
natural weighting. The peak sensitivity is also
closer to natural weighting.

weighting=’radial’ : Gridding weights are given by ‘ data_weight * uvdistance ‘

This method approximately minimizes rms sidelobes
for an east-west synthesis array.

For more details on weighting please see Chapter3
of Dan Briggs’ thesis (http://www.aoc.nrao.edu/dissertations/dbriggs)

robust Robustness parameter for Briggs weighting.

robust = -2.0 maps to uniform weighting.
robust = +2.0 maps to natural weighting.
(robust=0.5 is equivalent to robust=0.0 in AIPS IMAGR.)

	npixels Number of pixels to determine uv-cell size for super-uniform weighting
	
(0 defaults to -/+ 3 pixels)

	npixels – uv-box used for weight calculation
	
a box going from -npixel/2 to +npixel/2 on each side

around a point is used to calculate weight density.

npixels=2 goes from -1 to +1 and covers 3 pixels on a side.

	npixels=0 implies a single pixel, which does not make sense for
	superuniform weighting. Therefore, if npixels=0 it will
be forced to 6 (or a box of -3pixels to +3pixels) to cover
7 pixels on a side.

uvtaper uv-taper on outer baselines in uv-plane

Apply a Gaussian taper in addition to the weighting scheme specified
via the ‘weighting’ parameter. Higher spatial frequencies are weighted
down relative to lower spatial frequencies to suppress artifacts
arising from poorly sampled areas of the uv-plane. It is equivalent to
smoothing the PSF obtained by other weighting schemes and can be
specified either as a Gaussian in uv-space (eg. units of lambda)
or as a Gaussian in the image domain (eg. angular units like arcsec).

uvtaper = [bmaj, bmin, bpa]

NOTE: the on-sky FWHM in arcsec is roughly the uv taper/200 (klambda).
default: uvtaper=[]; no Gaussian taper applied

	example: uvtaper=[‘5klambda’] circular taper
	
	FWHM=5 kilo-lambda
	uvtaper=[‘5klambda’,’3klambda’,’45.0deg’]
uvtaper=[‘10arcsec’] on-sky FWHM 10 arcseconds
uvtaper=[‘300.0’] default units are lambda

in aperture plane

niter Maximum number of iterations

A stopping criterion based on total iteration count.

Iterations are typically defined as the selecting one flux component
and partially subtracting it out from the residual image.

niter=0 : Do only the initial major cycle (make dirty image, psf, pb, etc)

niter larger than zero : Run major and minor cycles.

Note : Global stopping criteria vs major-cycle triggers

In addition to global stopping criteria, the following rules are
used to determine when to terminate a set of minor cycle iterations
and trigger major cycles [derived from Cotton-Schwab Clean, 1984]

	‘cycleniter’controls the maximum number of iterations per image
	plane before triggering a major cycle.

	‘cyclethreshold’Automatically computed threshold related to the
	
max sidelobe level of the PSF and peak residual.

Divergence, detected as an increase of 10% in peak residual from the
minimum so far (during minor cycle iterations)

The first criterion to be satisfied takes precedence.

	NoteIteration counts for cubes or multi-field images :
	
For images with multiple planes (or image fields) on which the
deconvolver operates in sequence, iterations are counted across
all planes (or image fields). The iteration count is compared with
‘niter’ only after all channels/planes/fields have completed their
minor cycles and exited either due to ‘cycleniter’ or ‘cyclethreshold’.
Therefore, the actual number of iterations reported in the logger
can sometimes be larger than the user specified value in ‘niter’.
For example, with niter=100, cycleniter=20,nchan=10,threshold=0,
a total of 200 iterations will be done in the first set of minor cycles
before the total is compared with niter=100 and it exits.

	NoteAdditional global stopping criteria include
	
	no change in peak residual across two major cycles

	a 50% or more increase in peak residual across one major cycle

gain Loop gain

Fraction of the source flux to subtract out of the residual image
for the CLEAN algorithm and its variants.

A low value (0.2 or less) is recommended when the sky brightness
distribution is not well represented by the basis functions used by
the chosen deconvolution algorithm. A higher value can be tried when
there is a good match between the true sky brightness structure and
the basis function shapes. For example, for extended emission,
multiscale clean with an appropriate set of scale sizes will tolerate
a higher loop gain than Clark clean (for example).

threshold Stopping threshold (number in units of Jy, or string)

A global stopping threshold that the peak residual (within clean mask)
across all image planes is compared to.

threshold = 0.005 : 5mJy
threshold = ‘5.0mJy’

	NoteA ‘cyclethreshold’ is internally computed and used as a major cycle
	
trigger. It is related what fraction of the PSF can be reliably
used during minor cycle updates of the residual image. By default
the minor cycle iterations terminate once the peak residual reaches
the first sidelobe level of the brightest source.

	‘cyclethreshold’ is computed as follows using the settings in
	parameters ‘cyclefactor’,’minpsffraction’,’maxpsffraction’,’threshold’ :

psf_fraction = max_psf_sidelobe_level * ‘cyclefactor’
psf_fraction = max(psf_fraction, ‘minpsffraction’);
psf_fraction = min(psf_fraction, ‘maxpsffraction’);
cyclethreshold = peak_residual * psf_fraction
cyclethreshold = max(cyclethreshold, ‘threshold’)

If nsigma is set (>0.0), the N-sigma threshold is calculated (see
the description under nsigma), then cyclethreshold is further modified as,

cyclethreshold = max(cyclethreshold, nsgima_threshold)

‘cyclethreshold’ is made visible and editable only in the
interactive GUI when tclean is run with interactive=True.

nsigma Multiplicative factor for rms-based threshold stopping

N-sigma threshold is calculated as nsigma * rms value per image plane determined
from a robust statistics. For nsigma > 0.0, in a minor cycle, a maximum of the two values,
the N-sigma threshold and cyclethreshold, is used to trigger a major cycle
(see also the descreption under ‘threshold’).
Set nsigma=0.0 to preserve the previous tclean behavior without this feature.

	cycleniter Maximum number of minor-cycle iterations (per plane) before triggering
	a major cycle

For example, for a single plane image, if niter=100 and cycleniter=20,
there will be 5 major cycles after the initial one (assuming there is no
threshold based stopping criterion). At each major cycle boundary, if
the number of iterations left over (to reach niter) is less than cycleniter,
it is set to the difference.

	Notecycleniter applies per image plane, even if cycleniter x nplanes
	gives a total number of iterations greater than ‘niter’. This is to
preserve consistency across image planes within one set of minor
cycle iterations.

cyclefactor Scaling on PSF sidelobe level to compute the minor-cycle stopping threshold.

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

cyclefactor=1.0 results in a cyclethreshold at the first sidelobe level of
the brightest source in the residual image before the minor cycle starts.

cyclefactor=0.5 allows the minor cycle to go deeper.
cyclefactor=2.0 triggers a major cycle sooner.

minpsffraction PSF fraction that marks the max depth of cleaning in the minor cycle

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

For example, minpsffraction=0.5 will stop cleaning at half the height of
the peak residual and trigger a major cycle earlier.

maxpsffraction PSF fraction that marks the minimum depth of cleaning in the minor cycle

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

For example, maxpsffraction=0.8 will ensure that at least the top 20
percent of the source will be subtracted out in the minor cycle even if
the first PSF sidelobe is at the 0.9 level (an extreme example), or if the
cyclefactor is set too high for anything to get cleaned.

interactive Modify masks and parameters at runtime

interactive=True will trigger an interactive GUI at every major cycle
boundary (after the major cycle and before the minor cycle).

The interactive mode is currently not available for parallel cube imaging (please also
refer to the Note under the documentation for ‘parallel’ below).

Options for runtime parameter modification are :

	Interactive clean maskDraw a 1/0 mask (appears as a contour) by hand.
	If a mask is supplied at the task interface or if
automasking is invoked, the current mask is
displayed in the GUI and is available for manual
editing.

	NoteIf a mask contour is not visible, please
	check the cursor display at the bottom of
GUI to see which parts of the mask image
have ones and zeros. If the entire mask=1
no contours will be visible.

	Operation buttons– Stop execution now (restore current model and exit)
	
	– Continue on until global stopping criteria are reached
	without stopping for any more interaction

	– Continue with minor cycles and return for interaction
	after the next major cycle.

Iteration control : – max cycleniter : Trigger for the next major cycle

The display begins with
[min(cycleniter, niter - itercount)]
and can be edited by hand.

—iterations left : The display begins with [niter-itercount]
and can be edited to increase or
decrease the total allowed niter.

– threshold : Edit global stopping threshold

—cyclethreshold : The display begins with the
automatically computed value
(see Note in help for ‘threshold’),
and can be edited by hand.

All edits will be reflected in the log messages that appear
once minor cycles begin.

	[For scripting purposes, replacing True/False with 1/0 will get tclean to
	return an imaging summary dictionary to python]

usemask Type of mask(s) to be used for deconvolution

	user: (default) mask image(s) or user specified region file(s) or string CRTF expression(s)
	subparameters: mask, pbmask

	pb: primary beam mask
	subparameter: pbmask

	Example: usemask=”pb”, pbmask=0.2
	Construct a mask at the 0.2 pb gain level.
(Currently, this option will work only with
gridders that produce .pb (i.e. mosaic and awproject)
or if an externally produced .pb image exists on disk)

	auto-multithreshauto-masking by multiple thresholds for deconvolution
	
	subparameterssidelobethreshold, noisethreshold, lownoisethreshold, negativethrehsold, smoothfactor,
	minbeamfrac, cutthreshold, pbmask, growiterations, dogrowprune, minpercentchange, verbose

if pbmask is >0.0, the region outside the specified pb gain level is excluded from
image statistics in determination of the threshold.

	Note: By default the intermediate mask generated by automask at each deconvolution cycle
	is over-written in the next cycle but one can save them by setting
the environment variable, SAVE_ALL_AUTOMASKS=”true”.
(e.g. in the CASA prompt, os.environ[‘SAVE_ALL_AUTOMASKS’]=”true”)
The saved CASA mask image name will be imagename.mask.autothresh#, where
is the iteration cycle number.

mask Mask (a list of image name(s) or region file(s) or region string(s)

The name of a CASA image or region file or region string that specifies
a 1/0 mask to be used for deconvolution. Only locations with value 1 will
be considered for the centers of flux components in the minor cycle.
If regions specified fall completely outside of the image, tclean will throw an error.

Manual mask options/examples :

	mask=’xxx.mask’Use this CASA image named xxx.mask and containing
	ones and zeros as the mask.
If the mask is only different in spatial coordinates from what is being made
it will be resampled to the target coordinate system before being used.
The mask has to have the same shape in velocity and Stokes planes
as the output image. Exceptions are single velocity and/or single
Stokes plane masks. They will be expanded to cover all velocity and/or
Stokes planes of the output cube.

	[NoteIf an error occurs during image resampling or
	if the expected mask does not appear, please try
using tasks ‘imregrid’ or ‘makemask’ to resample
the mask image onto a CASA image with the target
shape and coordinates and supply it via the ‘mask’
parameter.]

	mask=’xxx.crtf’A text file with region strings and the following on the first line
	(#CRTFv0 CASA Region Text Format version 0)
This is the format of a file created via the viewer’s region
tool when saved in CASA region file format.

mask=’circle[[40pix,40pix],10pix]’ : A CASA region string.

mask=[‘xxx.mask’,’xxx.crtf’, ‘circle[[40pix,40pix],10pix]’] : a list of masks

	NoteMask images for deconvolution must contain 1 or 0 in each pixel.
	Such a mask is different from an internal T/F mask that can be
held within each CASA image. These two types of masks are not
automatically interchangeable, so please use the makemask task
to copy between them if you need to construct a 1/0 based mask
from a T/F one.

	NoteWork is in progress to generate more flexible masking options and
	enable more controls.

pbmask Sub-parameter for usemask=’auto-multithresh’: primary beam mask

	Examplespbmask=0.0 (default, no pb mask)
	pbmask=0.2 (construct a mask at the 0.2 pb gain level)

sidelobethreshold Sub-parameter for “auto-multithresh”: mask threshold based on sidelobe levels: sidelobethreshold * max_sidelobe_level * peak residual
noisethreshold Sub-parameter for “auto-multithresh”: mask threshold based on the noise level: noisethreshold * rms

The rms is calculated from MAD with rms = 1.4826*MAD.

lownoisethreshold Sub-parameter for “auto-multithresh”: mask threshold to grow previously masked regions via binary dilation: lownoisethreshold * rms in residual image

The rms is calculated from MAD with rms = 1.4826*MAD.

negativethreshold Sub-parameter for “auto-multithresh”: mask threshold for negative features: -1.0* negativethreshold * rms

The rms is calculated from MAD with rms = 1.4826*MAD.

smoothfactor Sub-parameter for “auto-multithresh”: smoothing factor in a unit of the beam
minbeamfrac Sub-parameter for “auto-multithresh”: minimum beam fraction in size to prune masks smaller than mimbeamfrac * beam

<=0.0 : No pruning

cutthreshold Sub-parameter for “auto-multithresh”: threshold to cut the smoothed mask to create a final mask: cutthreshold * peak of the smoothed mask
growiterations Sub-parameter for “auto-multithresh”: Maximum number of iterations to perform using binary dilation for growing the mask
dogrowprune Experimental sub-parameter for “auto-multithresh”: Do pruning on the grow mask
minpercentchange If the change in the mask size in a particular channel is less than minpercentchange, stop masking that channel in subsequent cycles. This check is only applied when noise based threshold is used and when the previous clean major cycle had a cyclethreshold value equal to the clean threshold. Values equal to -1.0 (or any value less than 0.0) will turn off this check (the default). Automask will still stop masking if the current channel mask is an empty mask and the noise threshold was used to determine the mask.
verbose he summary of automasking at the end of each automasking process

is printed in the logger. Following information per channel will be listed in the summary.

chan: channel number
masking?: F - stop updating automask for the subsequent iteration cycles
RMS: robust rms noise
peak: peak in residual image
thresh_type: type of threshold used (noise or sidelobe)
thresh_value: the value of threshold used
N_reg: number of the automask regions
N_pruned: number of the automask regions removed by pruning
N_grow: number of the grow mask regions
N_grow_pruned: number of the grow mask regions removed by pruning
N_neg_pix: number of pixels for negative mask regions

Note that for a large cube, extra logging may slow down the process.

	restart images (and start from an existing model image)
	or automatically increment the image name and make a new image set.

	TrueRe-use existing images. If imagename.model exists the subsequent
	
run will start from this model (i.e. predicting it using current gridder
settings and starting from the residual image). Care must be taken
when combining this option with startmodel. Currently, only one or
the other can be used.

	startmodel=’’, imagename.model exists :
	
	Start from imagename.model

	startmodel=’xxx’, imagename.model does not exist :
	
	Start from startmodel

	startmodel=’xxx’, imagename.model exists :
	

	Exit with an error message requesting the user to pick
only one model. This situation can arise when doing one
run with startmodel=’xxx’ to produce an output
imagename.model that includes the content of startmodel,
and wanting to restart a second run to continue deconvolution.
Startmodel should be set to ‘’ before continuing.

If any change in the shape or coordinate system of the image is
desired during the restart, please change the image name and
use the startmodel (and mask) parameter(s) so that the old model
(and mask) can be regridded to the new coordinate system before starting.

	FalseA convenience feature to increment imagename with ‘_1’, ‘_2’,
	
etc as suffixes so that all runs of tclean are fresh starts (without
having to change the imagename parameter or delete images).

This mode will search the current directory for all existing
imagename extensions, pick the maximum, and adds 1.
For imagename=’try’ it will make try.psf, try_2.psf, try_3.psf, etc.

This also works if you specify a directory name in the path :
imagename=’outdir/try’. If ‘./outdir’ does not exist, it will create it.
Then it will search for existing filenames inside that directory.

If outlier fields are specified, the incrementing happens for each
of them (since each has its own ‘imagename’). The counters are
synchronized across imagefields, to make it easier to match up sets
of output images. It adds 1 to the ‘max id’ from all outlier names
on disk. So, if you do two runs with only the main field

(imagename=’try’), and in the third run you add an outlier with
imagename=’outtry’, you will get the following image names
for the third run : ‘try_3’ and ‘outtry_3’ even though
‘outry’ and ‘outtry_2’ have not been used.

savemodel Options to save model visibilities (none, virtual, modelcolumn)

Often, model visibilities must be created and saved in the MS
to be later used for self-calibration (or to just plot and view them).

	noneDo not save any model visibilities in the MS. The MS is opened
	in readonly mode.

Model visibilities can be predicted in a separate step by
restarting tclean with niter=0,savemodel=virtual or modelcolumn
and not changing any image names so that it finds the .model on
disk (or by changing imagename and setting startmodel to the
original imagename).

	virtualIn the last major cycle, save the image model and state of the
	gridder used during imaging within the SOURCE subtable of the
MS. Images required for de-gridding will also be stored internally.
All future references to model visibilities will activate the
(de)gridder to compute them on-the-fly. This mode is useful
when the dataset is large enough that an additional model data
column on disk may be too much extra disk I/O, when the
gridder is simple enough that on-the-fly recomputing of the
model visibilities is quicker than disk I/O.

	modelcolumnIn the last major cycle, save predicted model visibilities
	in the MODEL_DATA column of the MS. This mode is useful when
the de-gridding cost to produce the model visibilities is higher
than the I/O required to read the model visibilities from disk.
This mode is currently required for gridder=’awproject’.
This mode is also required for the ability to later pull out
model visibilities from the MS into a python array for custom
processing.

	Note 1The imagename.model image on disk will always be constructed
	if the minor cycle runs. This savemodel parameter applies only to
model visibilities created by de-gridding the model image.

	Note 2It is possible for an MS to have both a virtual model
	as well as a model_data column, but under normal operation,
the last used mode will get triggered. Use the delmod task to
clear out existing models from an MS if confusion arises.

calcres Calculate initial residual image

This parameter controls what the first major cycle does.

calcres=False with niter greater than 0 will assume that
a .residual image already exists and that the minor cycle can
begin without recomputing it.

calcres=False with niter=0 implies that only the PSF will be made
and no data will be gridded.

calcres=True requires that calcpsf=True or that the .psf and .sumwt
images already exist on disk (for normalization purposes).

	Usage exampleFor large runs (or a pipeline scripts) it may be
	useful to first run tclean with niter=0 to create
an initial .residual to look at and perhaps make
a custom mask for. Imaging can be resumed
without recomputing it.

calcpsf Calculate PSF

This parameter controls what the first major cycle does.

calcpsf=False will assume that a .psf image already exists
and that the minor cycle can begin without recomputing it.

parallel Run major cycles in parallel (this feature is experimental)

Parallel tclean will run only if casa has already been started using mpirun.
Please refer to HPC documentation for details on how to start this on your system.

Example : mpirun -n 3 -xterm 0 which casa

	Continuum Imaging :
	
	Data are partitioned (in time) into NProc pieces

	Gridding/iFT is done separately per partition

	Images (and weights) are gathered and then normalized

	One non-parallel minor cycle is run

	Model image is scattered to all processes

	Major cycle is done in parallel per partition

	Cube Imaging :
	
	Data and Image coordinates are partitioned (in freq) into NProc pieces

	Each partition is processed independently (major and minor cycles)

	All processes are synchronized at major cycle boundaries for convergence checks

	At the end, cubes from all partitions are concatenated along the spectral axis

	Note 1Iteration control for cube imaging is independent per partition.
	

	
	There is currently no communication between them to synchronize
	information such as peak residual and cyclethreshold. Therefore,
different chunks may trigger major cycles at different levels.

	For cube imaging in parallel, there is currently no interactive masking.

(Proper synchronization of iteration control is work in progress.)

 suncasa.suncasatasks.ptclean6

suncasa.suncasatasks.ptclean6

Module Contents

Classes

	_ptclean6

	ptclean6 ---- Parallelized tclean in consecutive time steps

Attributes

	_pc

	

	ptclean6

	

	
suncasa.suncasatasks.ptclean6._pc

	

	
class suncasa.suncasatasks.ptclean6._ptclean6

	ptclean6 —- Parallelized tclean in consecutive time steps

Parallelized clean in consecutive time steps. Packed over CASA 6 tclean.

——— parameter descriptions ———————————————

	vis Name(s) of input visibility file(s)
	default: none;
example: vis=’ngc5921.ms’

vis=[‘ngc5921a.ms’,’ngc5921b.ms’]; multiple MSes

imageprefix Prefix of output image names (usually useful in defining the output path)
imagesuffix Suffix of output image names (usually useful in specifyting the image type, version, etc.)
ncpu Number of cpu cores to use
twidth Number of time pixels to average
doreg True if use vla_prep to register the image
usephacenter True if use the phacenter information from the measurement set (e.g., VLA); False to assume the phase center is at the solar disk center (EOVSA)
reftime Reference time of the J2000 coordinates associated with the ephemeris target. e.g., “2012/03/03/12:00”. This is used for helioimage2fits.py to find the solar x y offset in order to register the image. If not set, use the actual timerange of the image (default)
toTb True if convert to brightness temperature
sclfactor scale the brightness temperature up by its value
subregion The name of a CASA region string

The name of a CASA image or region file or region string. Only locations within the region will
output to the fits file.
If regions specified fall completely outside of the image, ptclean6 will throw an error.

Manual mask options/examples :

subregion=’box[[224pix,224pix],[288pix,288pix]]’ : A CASA region string.

docompress True if compress the output fits files
overwrite True if overwrite the image
selectdata Enable data selection parameters.
field to image or mosaic. Use field id(s) or name(s).

[‘go listobs’ to obtain the list id’s or names]

	default: ‘’= all fields
	If field string is a non-negative integer, it is assumed to
be a field index otherwise, it is assumed to be a
field name
field=’0~2’; field ids 0,1,2
field=’0,4,5~7’; field ids 0,4,5,6,7
field=’3C286,3C295’; field named 3C286 and 3C295
field = ‘3,4C*’; field id 3, all names starting with 4C
For multiple MS input, a list of field strings can be used:
field = [‘0~2’,’0~4’]; field ids 0-2 for the first MS and 0-4

for the second

field = ‘0~2’; field ids 0-2 for all input MSes

	spw l window/channels
	
	NOTE: channels de-selected here will contain all zeros if
	selected by the parameter mode subparameters.

	default: ‘’=all spectral windows and channels
	spw=’0~2,4’; spectral windows 0,1,2,4 (all channels)
spw=’0:5~61’; spw 0, channels 5 to 61
spw=’<2’; spectral windows less than 2 (i.e. 0,1)
spw=’0,10,3:3~45’; spw 0,10 all channels, spw 3,

channels 3 to 45.

spw=’0~2:2~6’; spw 0,1,2 with channels 2 through 6 in each.
For multiple MS input, a list of spw strings can be used:
spw=[‘0’,’0~3’]; spw ids 0 for the first MS and 0-3 for the second
spw=’0~3’ spw ids 0-3 for all input MS
spw=’3:10~20;50~60’ for multiple channel ranges within spw id 3
spw=’3:10~20;50~60,4:0~30’ for different channel ranges for spw ids 3 and 4
spw=’0:0~10,1:20~30,2:1;2;3’; spw 0, channels 0-10,

spw 1, channels 20-30, and spw 2, channels, 1,2 and 3

spw=’1~4;6:15~48’ for channels 15 through 48 for spw ids 1,2,3,4 and 6

timerange Range of time to select from data

default: ‘’ (all); examples,
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
Note: if YYYY/MM/DD is missing date defaults to first

day in data set

timerange=’09:14:0~09:54:0’ picks 40 min on first day
timerange=’25:00:00~27:30:00’ picks 1 hr to 3 hr

30min on NEXT day

	timerange=’09:44:00’ pick data within one integration
	of time

timerange=’> 10:24:00’ data after this time
For multiple MS input, a list of timerange strings can be
used:
timerange=[‘09:14:0~09:54:0’,’> 10:24:00’]
timerange=’09:14:0~09:54:0’’; apply the same timerange for

all input MSes

	uvrange Select data within uvrange (default unit is meters)
	default: ‘’ (all); example:
uvrange=’0~1000klambda’; uvrange from 0-1000 kilo-lambda
uvrange=’> 4klambda’;uvranges greater than 4 kilo lambda
For multiple MS input, a list of uvrange strings can be
used:
uvrange=[‘0~1000klambda’,’100~1000klamda’]
uvrange=’0~1000klambda’; apply 0-1000 kilo-lambda for all

input MSes

antenna Select data based on antenna/baseline

default: ‘’ (all)
If antenna string is a non-negative integer, it is
assumed to be an antenna index, otherwise, it is
considered an antenna name.
antenna=’5&6’; baseline between antenna index 5 and

index 6.

	antenna=’VA05&VA06’; baseline between VLA antenna 5
	and 6.

antenna=’5&6;7&8’; baselines 5-6 and 7-8
antenna=’5’; all baselines with antenna index 5
antenna=’05’; all baselines with antenna number 05

(VLA old name)

	antenna=’5,6,9’; all baselines with antennas 5,6,9
	index number

For multiple MS input, a list of antenna strings can be
used:
antenna=[‘5’,’5&6’];
antenna=’5’; antenna index 5 for all input MSes
antenna=’!DV14’; use all antennas except DV14

scan Scan number range

default: ‘’ (all)
example: scan=’1~5’
For multiple MS input, a list of scan strings can be used:
scan=[‘0~100’,’10~200’]
scan=’0~100; scan ids 0-100 for all input MSes

	observation Observation ID range
	default: ‘’ (all)
example: observation=’1~5’

intent Scan Intent(s)

default: ‘’ (all)
example: intent=’TARGET_SOURCE’
example: intent=’TARGET_SOURCE1,TARGET_SOURCE2’
example: intent=’TARGET_POINTING*’

	datacolumn Data column to image (data or observed, corrected)
	default:’corrected’
(If ‘corrected’ does not exist, it will use ‘data’ instead)

imagename Pre-name of output images

example : imagename=’try’

Output images will be (a subset of) :

try.psf - Point spread function
try.residual - Residual image
try.image - Restored image
try.model - Model image (contains only flux components)
try.sumwt - Single pixel image containing sum-of-weights.

(for natural weighting, sensitivity=1/sqrt(sumwt))

try.pb - Primary beam model (values depend on the gridder used)

Widefield projection algorithms (gridder=mosaic,awproject) will
compute the following images too.
try.weight - FT of gridded weights or the

un-normalized sum of PB-square (for all pointings)
Here, PB = sqrt(weight) normalized to a maximum of 1.0

For multi-term wideband imaging, all relevant images above will
have additional .tt0,.tt1, etc suffixes to indicate Taylor terms,
plus the following extra output images.
try.alpha - spectral index
try.alpha.error - estimate of error on spectral index
try.beta - spectral curvature (if nterms > 2)

	TipInclude a directory name in ‘imagename’ for all
	output images to be sent there instead of the
current working directory : imagename=’mydir/try’

	TipRestarting an imaging run without changing ‘imagename’
	

	implies continuation from the existing model image on disk.
	
	If ‘startmodel’ was initially specified it needs to be set to “”
for the restart run (or tclean will exit with an error message).

	By default, the residual image and psf will be recomputed
but if no changes were made to relevant parameters between
the runs, set calcres=False, calcpsf=False to resume directly from
the minor cycle without the (unnecessary) first major cycle.

To automatically change ‘imagename’ with a numerical
increment, set restart=False (see tclean docs for ‘restart’).

	NoteAll imaging runs will by default produce restored images.
	For a niter=0 run, this will be redundant and can optionally
be turned off via the ‘restoration=T/F’ parameter.

	imsize Number of pixels
	
	exampleimsize = [350,250]
	imsize = 500 is equivalent to [500,500]

To take proper advantage of internal optimized FFT routines, the
number of pixels must be even and factorizable by 2,3,5,7 only.

	cell Cell size
	example: cell=[‘0.5arcsec,’0.5arcsec’] or
cell=[‘1arcmin’, ‘1arcmin’]
cell = ‘1arcsec’ is equivalent to [‘1arcsec’,’1arcsec’]

	phasecenter Phase center of the image (string or field id); if the phasecenter is the name known major solar system object (‘MERCURY’, ‘VENUS’, ‘MARS’, ‘JUPITER’, ‘SATURN’, ‘URANUS’, ‘NEPTUNE’, ‘PLUTO’, ‘SUN’, ‘MOON’) or is an ephemerides table then that source is tracked and the background sources get smeared. There is a special case, when phasecenter=’TRACKFIELD’, which will use the ephemerides or polynomial phasecenter in the FIELD table of the MS’s as the source center to track.
	
	example: phasecenter=6
	phasecenter=’J2000 19h30m00 -40d00m00’
phasecenter=’J2000 292.5deg -40.0deg’
phasecenter=’J2000 5.105rad -0.698rad’
phasecenter=’ICRS 13:05:27.2780 -049.28.04.458’
phasecenter=’myComet_ephem.tab’
phasecenter=’MOON’
phasecenter=’TRACKFIELD’

	stokes Stokes Planes to make
	
	default=’I’; example: stokes=’IQUV’;
	Options: ‘I’,’Q’,’U’,’V’,’IV’,’QU’,’IQ’,’UV’,’IQUV’,’RR’,’LL’,’XX’,’YY’,’RRLL’,’XXYY’,’pseudoI’

	NoteDue to current internal code constraints, if any correlation pair
	is flagged, by default, no data for that row in the MS will be used.
So, in an MS with XX,YY, if only YY is flagged, neither a
Stokes I image nor an XX image can be made from those data points.
In such a situation, please split out only the unflagged correlation into
a separate MS.

	NoteThe ‘pseudoI’ option is a partial solution, allowing Stokes I imaging
	when either of the parallel-hand correlations are unflagged.

The remaining constraints shall be removed (where logical) in a future release.

	projection Coordinate projection
	Examples : SIN, NCP
A list of supported (but untested) projections can be found here :
http://casa.nrao.edu/active/docs/doxygen/html/classcasa_1_1Projection.html#a3d5f9ec787e4eabdce57ab5edaf7c0cd

startmodel Name of starting model image

The contents of the supplied starting model image will be
copied to the imagename.model before the run begins.

example : startmodel = ‘singledish.im’

For deconvolver=’mtmfs’, one image per Taylor term must be provided.
example : startmodel = [‘try.model.tt0’, ‘try.model.tt1’]

	startmodel = [‘try.model.tt0’] will use a starting model only
	for the zeroth order term.

	startmodel = [‘’,’try.model.tt1’] will use a starting model only
	for the first order term.

This starting model can be of a different image shape and size from
what is currently being imaged. If so, an image regrid is first triggered
to resample the input image onto the target coordinate system.

A common usage is to set this parameter equal to a single dish image

Negative components in the model image will be included as is.

	[NoteIf an error occurs during image resampling/regridding,
	please try using task imregrid to resample the starting model
image onto a CASA image with the target shape and
coordinate system before supplying it via startmodel]

specmode Spectral definition mode (mfs,cube,cubedata, cubesource)

	mode=’mfs’Continuum imaging with only one output image channel.
	(mode=’cont’ can also be used here)

	mode=’cube’Spectral line imaging with one or more channels
	
Parameters start, width,and nchan define the spectral
coordinate system and can be specified either in terms
of channel numbers, frequency or velocity in whatever
spectral frame is specified in ‘outframe’.
All internal and output images are made with outframe as the
base spectral frame. However imaging code internally uses the fixed
spectral frame, LSRK for automatic internal software
Doppler tracking so that a spectral line observed over an
extended time range will line up appropriately.
Therefore the output images have additional spectral frame conversion
layer in LSRK on the top the base frame.

	(NoteEven if the input parameters are specified in a frame
	other than LSRK, the viewer still displays spectral
axis in LSRK by default because of the conversion frame
layer mentioned above. The viewer can be used to relabel
the spectral axis in any desired frame - via the spectral
reference option under axis label properties in the
data display options window.)

	mode=’cubedata’Spectral line imaging with one or more channels
	There is no internal software Doppler tracking so
a spectral line observed over an extended time range
may be smeared out in frequency. There is strictly
no valid spectral frame with which to label the output
images, but they will list the frame defined in the MS.

mode=’cubesource’: Spectral line imaging while
tracking moving source (near field or solar system
objects). The velocity of the source is accounted
and the frequency reported is in the source frame.
As there is not SOURCE frame defined,
the frame reported will be REST (as it may not be
in the rest frame emission region may be
moving w.r.t the systemic velocity frame)

reffreq Reference frequency of the output image coordinate system

Example : reffreq=’1.5GHz’ as a string with units.

By default, it is calculated as the middle of the selected frequency range.

For deconvolver=’mtmfs’ the Taylor expansion is also done about
this specified reference frequency.

	nchan Number of channels in the output image
	For default (=-1), the number of channels will be automatically determined
based on data selected by ‘spw’ with ‘start’ and ‘width’.
It is often easiest to leave nchan at the default value.
example: nchan=100

	start First channel (e.g. start=3,start=’1.1GHz’,start=’15343km/s’)
	of output cube images specified by data channel number (integer),
velocity (string with a unit), or frequency (string with a unit).
Default:’’; The first channel is automatically determined based on
the ‘spw’ channel selection and ‘width’.
When the channel number is used along with the channel selection

in ‘spw’ (e.g. spw=’0:6~100’),

‘start’ channel number is RELATIVE (zero-based) to the selected
channels in ‘spw’. So for the above example,
start=1 means that the first image channel is the second selected
data channel, which is channel 7.
For specmode=’cube’, when velocity or frequency is used it is
interpreted with the frame defined in outframe. [The parameters of
the desired output cube can be estimated by using the ‘transform’
functionality of ‘plotms’]
examples: start=’5.0km/s’; 1st channel, 5.0km/s in outframe

start=’22.3GHz’; 1st channel, 22.3GHz in outframe

	width Channel width (e.g. width=2,width=’0.1MHz’,width=’10km/s’) of output cube images
	specified by data channel number (integer), velocity (string with a unit), or
or frequency (string with a unit).
Default:’’; data channel width
The sign of width defines the direction of the channels to be incremented.
For width specified in velocity or frequency with ‘-’ in front gives image channels in
decreasing velocity or frequency, respectively.
For specmode=’cube’, when velocity or frequency is used it is interpreted with
the reference frame defined in outframe.
examples: width=’2.0km/s’; results in channels with increasing velocity

width=’-2.0km/s’; results in channels with decreasing velocity
width=’40kHz’; results in channels with increasing frequency
width=-2; results in channels averaged of 2 data channels incremented from

high to low channel numbers

	outframe Spectral reference frame in which to interpret ‘start’ and ‘width’
	
Options: ‘’,’LSRK’,’LSRD’,’BARY’,’GEO’,’TOPO’,’GALACTO’,’LGROUP’,’CMB’
example: outframe=’bary’ for Barycentric frame

REST – Rest frequency
LSRD – Local Standard of Rest (J2000)

– as the dynamical definition (IAU, [9,12,7] km/s in galactic coordinates)

	LSRK – LSR as a kinematical (radio) definition
	– 20.0 km/s in direction ra,dec = [270,+30] deg (B1900.0)

BARY – Barycentric (J2000)
GEO — Geocentric
TOPO – Topocentric
GALACTO – Galacto centric (with rotation of 220 km/s in direction l,b = [90,0] deg.
LGROUP – Local group velocity – 308km/s towards l,b = [105,-7] deg (F. Ghigo)

CMB – CMB velocity – 369.5km/s towards l,b = [264.4, 48.4] deg (F. Ghigo)
DEFAULT = LSRK

	veltype Velocity type (radio, z, ratio, beta, gamma, optical)
	For start and/or width specified in velocity, specifies the velocity definition
Options: ‘radio’,’optical’,’z’,’beta’,’gamma’,’optical’
NOTE: the viewer always defaults to displaying the ‘radio’ frame,

but that can be changed in the position tracking pull down.

The different types (with F = f/f0, the frequency ratio), are:

Z = (-1 + 1/F)

RATIO = (F) *
RADIO = (1 - F)
OPTICAL == Z
BETA = ((1 - F2)/(1 + F2))
GAMMA = ((1 + F2)/2F) *
RELATIVISTIC == BETA (== v/c)
DEFAULT == RADIO
Note that the ones with an ‘*’ have no real interpretation
(although the calculation will proceed) if given as a velocity.

	restfreq List of rest frequencies or a rest frequency in a string.
	Specify rest frequency to use for output image.
*Currently it uses the first rest frequency in the list for translation of
velocities. The list will be stored in the output images.
Default: []; look for the rest frequency stored in the MS, if not available,
use center frequency of the selected channels
examples: restfreq=[‘1.42GHz’]

restfreq=’1.42GHz’

interpolation Spectral interpolation (nearest,linear,cubic)

Interpolation rules to use when binning data channels onto image channels
and evaluating visibility values at the centers of image channels.

	Note‘linear’ and ‘cubic’ interpolation requires data points on both sides of
	each image frequency. Errors are therefore possible at edge channels, or near
flagged data channels. When image channel width is much larger than the data
channel width there is nothing much to be gained using linear or cubic thus
not worth the extra computation involved.

	perchanweightdensity When calculating weight density for Briggs
	style weighting in a cube, this parameter
determines whether to calculate the weight
density for each channel independently
(the default, True)
or a common weight density for all of the selected
data. This parameter has no
meaning for continuum (specmode=’mfs’) imaging
or for natural and radial weighting schemes.
For cube imaging
perchanweightdensity=True is a recommended
option that provides more uniform
sensitivity per channel for cubes, but with
generally larger psfs than the
perchanweightdensity=False (prior behavior)
option. When using Briggs style weight with
perchanweightdensity=True, the imaging weight
density calculations use only the weights of
data that contribute specifically to that
channel. On the other hand, when
perchanweightdensity=False, the imaging
weight density calculations sum all of the
weights from all of the data channels
selected whose (u,v) falls in a given uv cell
on the weight density grid. Since the
aggregated weights, in any given uv cell,
will change depending on the number of
channels included when imaging, the psf
calculated for a given frequency channel will
also necessarily change, resulting in
variability in the psf for a given frequency
channel when perchanweightdensity=False. In
general, perchanweightdensity=False results
in smaller psfs for the same value of
robustness compared to
perchanweightdensity=True, but the rms noise
as a function of channel varies and increases
toward the edge channels;
perchanweightdensity=True provides more
uniform sensitivity per channel for
cubes. This may make it harder to find
estimates of continuum when
perchanweightdensity=False. If you intend to
image a large cube in many smaller subcubes
and subsequently concatenate, it is advisable
to use perchanweightdensity=True to avoid
surprisingly varying sensitivity and psfs
across the concatenated cube.

gridder Gridding options (standard, wproject, widefield, mosaic, awproject)

The following options choose different gridding convolution
functions for the process of convolutional resampling of the measured
visibilities onto a regular uv-grid prior to an inverse FFT.
Model prediction (degridding) also uses these same functions.
Several wide-field effects can be accounted for via careful choices of
convolution functions. Gridding (degridding) runtime will rise in
proportion to the support size of these convolution functions (in uv-pixels).

standard : Prolate Spheroid with 7x7 uv pixel support size

[This mode can also be invoked using ‘ft’ or ‘gridft’]

	wprojectW-Projection algorithm to correct for the widefield
	

non-coplanar baseline effect. [Cornwell et.al 2008]

wprojplanes is the number of distinct w-values at
which to compute and use different gridding convolution
functions (see help for wprojplanes).

	Convolution function support size can range
	from 5x5 to few 100 x few 100.

[This mode can also be invoked using ‘wprojectft’]

widefield : Facetted imaging with or without W-Projection per facet.

A set of facets x facets subregions of the specified image
are gridded separately using their respective phase centers
(to minimize max W). Deconvolution is done on the joint
full size image, using a PSF from the first subregion.

wprojplanes=1 : standard prolate spheroid gridder per facet.
wprojplanes > 1 : W-Projection gridder per facet.
nfacets=1, wprojplanes > 1 : Pure W-Projection and no facetting
nfacets=1, wprojplanes=1 : Same as standard,ft,gridft

A combination of facetting and W-Projection is relevant only for
very large fields of view. (In our current version of tclean, this

combination runs only with parallel=False.

	mosaicA-Projection with azimuthally symmetric beams without
	
sidelobes, beam rotation or squint correction.
Gridding convolution functions per visibility are computed
from FTs of PB models per antenna.
This gridder can be run on single fields as well as mosaics.

VLA : PB polynomial fit model (Napier and Rots, 1982)
EVLA : PB polynomial fit model (Perley, 2015)
ALMA : Airy disks for a 10.7m dish (for 12m dishes) and

6.25m dish (for 7m dishes) each with 0.75m
blockages (Hunter/Brogan 2011). Joint mosaic
imaging supports heterogeneous arrays for ALMA.

Typical gridding convolution function support sizes are
between 7 and 50 depending on the desired
accuracy (given by the uv cell size or image field of view).

[This mode can also be invoked using ‘mosaicft’ or ‘ftmosaic’]

	awprojectA-Projection with azimuthally asymmetric beams and
	

including beam rotation, squint correction,
conjugate frequency beams and W-projection.
[Bhatnagar et.al, 2008]

Gridding convolution functions are computed from
aperture illumination models per antenna and optionally
combined with W-Projection kernels and a prolate spheroid.
This gridder can be run on single fields as well as mosaics.

	VLAUses ray traced model (VLA and EVLA) including feed
	leg and subreflector shadows, off-axis feed location
(for beam squint and other polarization effects), and
a Gaussian fit for the feed beams (Ref: Brisken 2009)

	ALMASimilar ray-traced model as above (but the correctness
	of its polarization properties remains un-verified).

Typical gridding convolution function support sizes are
between 7 and 50 depending on the desired
accuracy (given by the uv cell size or image field of view).
When combined with W-Projection they can be significantly larger.

[This mode can also be invoked using ‘awprojectft’]

	imagemosaic(untested implementation)
	Grid and iFT each pointing separately and combine the
images as a linear mosaic (weighted by a PB model) in
the image domain before a joint minor cycle.

VLA/ALMA PB models are same as for gridder=’mosaicft’

—— Notes on PB models :

	
	Several different sources of PB models are used in the modes
	listed above. This is partly for reasons of algorithmic flexibility
and partly due to the current lack of a common beam model
repository or consensus on what beam models are most appropriate.

	
	For ALMA and gridder=’mosaic’, ray-traced (TICRA) beams
	are also available via the vpmanager tool.
For example, call the following before the tclean run.

vp.setpbimage(telescope=”ALMA”,
compleximage=’/home/casa/data/trunk/alma/responses/ALMA_0_DV__0_0_360_0_45_90_348.5_373_373_GHz_ticra2007_VP.im’,
antnames=[‘DV’+’%02d’%k for k in range(25)])
vp.saveastable(‘mypb.tab’)
Then, supply vptable=’mypb.tab’ to tclean.
(Currently this will work only for non-parallel runs)

—— Note on PB masks :

In tclean, A-Projection gridders (mosaic and awproject) produce a
.pb image and use the ‘pblimit’ subparameter to decide normalization
cutoffs and construct an internal T/F mask in the .pb and .image images.
However, this T/F mask cannot directly be used during deconvolution
(which needs a 1/0 mask). There are two options for making a pb based
deconvolution mask.

– Run tclean with niter=0 to produce the .pb, construct a 1/0 image

with the desired threshold (using ia.open(‘newmask.im’);
ia.calc(‘iif(“xxx.pb”>0.3,1.0,0.0)’);ia.close() for example),
and supply it via the ‘mask’ parameter in a subsequent run
(with calcres=F and calcpsf=F to restart directly from the minor cycle).

– Run tclean with usemask=’pb’ for it to automatically construct

a 1/0 mask from the internal T/F mask from .pb at a fixed 0.2 threshold.

—– Making PBs for gridders other than mosaic,awproject

After the PSF generation, a PB is constructed using the same
models used in gridder=’mosaic’ but just evaluated in the image
domain without consideration to weights.

facets Number of facets on a side

A set of (facets x facets) subregions of the specified image
are gridded separately using their respective phase centers
(to minimize max W). Deconvolution is done on the joint
full size image, using a PSF from the first subregion/facet.

In our current version of tclean, facets>1 may be used only
with parallel=False.

	psfphasecenter For mosaic use psf centered on this
	optional direction. You may need to use
this if for example the mosaic does not
have any pointing in the center of the
image. Another reason; as the psf is
approximate for a mosaic, this may help
to deconvolve a non central bright source
well and quickly.

example:

psfphasecenter=6 #center psf on field 6
psfphasecenter=’J2000 19h30m00 -40d00m00’
psfphasecenter=’J2000 292.5deg -40.0deg’
psfphasecenter=’J2000 5.105rad -0.698rad’
psfphasecenter=’ICRS 13:05:27.2780 -049.28.04.458’

	wprojplanes Number of distinct w-values at which to compute and use different
	gridding convolution functions for W-Projection

An appropriate value of wprojplanes depends on the presence/absence
of a bright source far from the phase center, the desired dynamic
range of an image in the presence of a bright far out source,
the maximum w-value in the measurements, and the desired trade off
between accuracy and computing cost.

As a (rough) guide, VLA L-Band D-config may require a
value of 128 for a source 30arcmin away from the phase
center. A-config may require 1024 or more. To converge to an
appropriate value, try starting with 128 and then increasing
it if artifacts persist. W-term artifacts (for the VLA) typically look
like arc-shaped smears in a synthesis image or a shift in source
position between images made at different times. These artifacts
are more pronounced the further the source is from the phase center.

There is no harm in simply always choosing a large value (say, 1024)
but there will be a significant performance cost to doing so, especially
for gridder=’awproject’ where it is combined with A-Projection.

wprojplanes=-1 is an option for gridder=’widefield’ or ‘wproject’
in which the number of planes is automatically computed.

vptable vpmanager

	vptable=””Choose default beams for different telescopes
	ALMA : Airy disks
EVLA : old VLA models.

Other primary beam models can be chosen via the vpmanager tool.

Step 1 : Set up the vpmanager tool and save its state in a table

vp.setpbpoly(telescope=’EVLA’, coeff=[1.0, -1.529e-3, 8.69e-7, -1.88e-10])
vp.saveastable(‘myvp.tab’)

Step 2 : Supply the name of that table in tclean.

tclean(….., vptable=’myvp.tab’,….)

Please see the documentation for the vpmanager for more details on how to
choose different beam models. Work is in progress to update the defaults
for EVLA and ALMA.

	NoteAWProjection currently does not use this mechanism to choose
	beam models. It instead uses ray-traced beams computed from
parameterized aperture illumination functions, which are not
available via the vpmanager. So, gridder=’awproject’ does not allow
the user to set this parameter.

mosweight When doing Brigg’s style weighting (including uniform) to perform the weight density calculation for each field indepedently if True. If False the weight density is calculated from the average uv distribution of all the fields.
aterm Use aperture illumination functions during gridding

This parameter turns on the A-term of the AW-Projection gridder.
Gridding convolution functions are constructed from aperture illumination
function models of each antenna.

	psterm Include the Prolate Spheroidal (PS) funtion as the anti-aliasing
	operator in the gridding convolution functions used for gridding.

Setting this parameter to true is necessary when aterm is set to
false. It can be set to false when aterm is set to true, though
with this setting effects of aliasing may be there in the image,
particularly near the edges.

When set to true, the .pb images will contain the fourier transform
of the of the PS funtion. The table below enumarates the functional
effects of the psterm, aterm and wprojplanes settings. PB referes to
the Primary Beam and FT() refers to the Fourier transform operation.

	AW-Projection True True >1 FT(PS) x PB
	False PB

	A-Projection True True 1 FT(PS) x PB
	False PB

W-Projection False True >1 FT(PS)

Standard False True 1 FT(PS)

	wbawp Use frequency dependent A-terms
	Scale aperture illumination functions appropriately with frequency
when gridding and combining data from multiple channels.

conjbeams Use conjugate frequency for wideband A-terms

While gridding data from one frequency channel, choose a convolution
function from a ‘conjugate’ frequency such that the resulting baseline
primary beam is approximately constant across frequency. For a system in
which the primary beam scales with frequency, this step will eliminate
instrumental spectral structure from the measured data and leave only the
sky spectrum for the minor cycle to model and reconstruct [Bhatnagar et al., ApJ, 2013].

As a rough guideline for when this is relevant, a source at the half power
point of the PB at the center frequency will see an artificial spectral
index of -1.4 due to the frequency dependence of the PB [Sault and Wieringa, 1994].
If left uncorrected during gridding, this spectral structure must be modeled
in the minor cycle (using the mtmfs algorithm) to avoid dynamic range limits
(of a few hundred for a 2:1 bandwidth).
This works for specmode=’mfs’ and its value is ignored for cubes

cfcache Convolution function cache directory name

Name of a directory in which to store gridding convolution functions.
This cache is filled at the beginning of an imaging run. This step can be time
consuming but the cache can be reused across multiple imaging runs that
use the same image parameters (cell size, image size , spectral data
selections, wprojplanes, wbawp, psterm, aterm). The effect of the wbawp,
psterm and aterm settings is frozen-in in the cfcache. Using an existing cfcache
made with a different setting of these parameters will not reflect the current
settings.

In a parallel execution, the construction of the cfcache is also parallelized
and the time to compute scales close to linearly with the number of compute
cores used. With the re-computation of Convolution Functions (CF) due to PA
rotation turned-off (the computepastep parameter), the total number of in the
cfcache can be computed as [No. of wprojplanes x No. of selected spectral windows x 4]

By default, cfcache = imagename + ‘.cf’

	usepointing The usepointing flag informs the gridder that it should utilize the pointing table
	to use the correct direction in which the antenna is pointing with respect to the pointing phasecenter.

computepastep Parallactic angle interval after the AIFs are recomputed (deg)

This parameter controls the accuracy of the aperture illumination function
used with AProjection for alt-az mount dishes where the AIF rotates on the
sky as the synthesis image is built up. Once the PA in the data changes by
the given interval, AIFs are re-computed at the new PA.

A value of 360.0 deg (the default) implies no re-computation due to PA rotation.
AIFs are computed for the PA value of the first valid data received and used for
all of the data.

rotatepastep Parallactic angle interval after which the nearest AIF is rotated (deg)

Instead of recomputing the AIF for every timestep’s parallactic angle,
the nearest existing AIF is used and rotated
after the PA changed by rotatepastep value.

A value of 360.0 deg (the default) disables rotation of the AIF.

For example, computepastep=360.0 and rotatepastep=5.0 will compute
the AIFs at only the starting parallactic angle and all other timesteps will
use a rotated version of that AIF at the nearest 5.0 degree point.

	pointingoffsetsigdev Corrections for heterogenous and time-dependent pointing
	
offsets via AWProjection are controlled by this parameter.
It is a vector of 2 ints or doubles each of which is interpreted
in units of arcsec. Based on the first threshold, a clustering
algorithm is applied to entries from the POINTING subtable
of the MS to determine how distinct antenna groups for which
the pointing offset must be computed separately. The second
number controls how much a pointing change across time can
be ignored and after which an antenna rebinning is required.

	NoteThe default value of this parameter is [], due a programmatic constraint.
	If run with this value, it will internally pick [600,600] and exercise the
option of using large tolerances (10arcmin) on both axes. Please choose
a setting explicitly for runs that need to use this parameter.

Note : This option is available only for gridder=’awproject’ and usepointing=True and

and has been validated primarily with VLASS on-the-fly mosaic data
where POINTING subtables have been modified after the data are recorded.

Examples of parameter usage :

	[100.0,100.0]Pointing offsets of 100 arcsec or less are considered
	small enough to be ignored. Using large values for both
indicates a homogeneous array.

	[10.0, 100.0]Based on entries in the POINTING subtable, antennas
	are grouped into clusters based on a 10arcsec bin size.
All antennas in a bin are given a pointing offset calculated
as the average of the offsets of all antennas in the bin.
On the time axis, offset changes upto 100 arcsec will be ignored.

	[10.0,10.0]Calculate separate pointing offsets for each antenna group
	(with a 10 arcsec bin size). As a function of time, recalculate
the antenna binning if the POINTING table entries change by
more than 10 arcsec w.r.to the previously computed binning.

	[1.0, 1.0]Tight tolerances will imply a fully heterogenous situation where
	each antenna gets its own pointing offset. Also, time-dependent
offset changes greater than 1 arcsec will trigger recomputes of
the phase gradients. This is the most general situation and is also
the most expensive option as it constructs and uses separate
phase gradients for all baselines and timesteps.

For VLASS 1.1 data with two kinds of pointing offsets, the recommended
setting is [30.0, 30.0].

For VLASS 1.2 data with only the time-dependent pointing offsets, the
recommended setting is [300.0, 30.0] to turn off the antenna grouping
but to retain the time dependent corrections required from one timestep
to the next.

pblimit PB gain level at which to cut off normalizations

Divisions by .pb during normalizations have a cut off at a .pb gain
level given by pblimit. Outside this limit, image values are set to zero.
Additionally, by default, an internal T/F mask is applied to the .pb, .image and
.residual images to mask out (T) all invalid pixels outside the pblimit area.

	NoteThis internal T/F mask cannot be used as a deconvolution mask.
	To do so, please follow the steps listed above in the Notes for the
‘gridder’ parameter.

	NoteTo prevent the internal T/F mask from appearing in anything other
	than the .pb and .image.pbcor images, ‘pblimit’ can be set to a
negative number. The absolute value will still be used as a valid ‘pblimit’.
A tclean restart using existing output images on disk that already
have this T/F mask in the .residual and .image but only pblimit set
to a negative value, will remove this mask after the next major cycle.

normtype Normalization type (flatnoise, flatsky, pbsquare)

Gridded (and FT’d) images represent the PB-weighted sky image.
Qualitatively it can be approximated as two instances of the PB
applied to the sky image (one naturally present in the data
and one introduced during gridding via the convolution functions).

xxx.weight : Weight image approximately equal to sum (square (pb))
xxx.pb : Primary beam calculated as sqrt (xxx.weight)

	normtype=’flatnoise’Divide the raw image by sqrt(.weight) so that
	the input to the minor cycle represents the
product of the sky and PB. The noise is ‘flat’
across the region covered by each PB.

	normtype=’flatsky’Divide the raw image by .weight so that the input
	to the minor cycle represents only the sky.
The noise is higher in the outer regions of the
primary beam where the sensitivity is low.

	normtype=’pbsquare’No normalization after gridding and FFT.
	The minor cycle sees the sky times pb square

deconvolver Name of minor cycle algorithm (hogbom,clark,multiscale,mtmfs,mem,clarkstokes)

Each of the following algorithms operate on residual images and psfs
from the gridder and produce output model and restored images.
Minor cycles stop and a major cycle is triggered when cyclethreshold
or cycleniter are reached. For all methods, components are picked from
the entire extent of the image or (if specified) within a mask.

	hogbomAn adapted version of Hogbom Clean [Hogbom, 1974]
	
	Find the location of the peak residual

	Add this delta function component to the model image

	Subtract a scaled and shifted PSF of the same size as the image
from regions of the residual image where the two overlap.

	Repeat

	clarkAn adapted version of Clark Clean [Clark, 1980]
	

	Find the location of max(I^2+Q^2+U^2+V^2)

	Add delta functions to each stokes plane of the model image

	Subtract a scaled and shifted PSF within a small patch size
from regions of the residual image where the two overlap.

	After several iterations trigger a Clark major cycle to subtract
components from the visibility domain, but without de-gridding.

	Repeat

	(Note‘clark’ maps to imagermode=’’ in the old clean task.
	
	‘clark_exp’ is another implementation that maps to
	imagermode=’mosaic’ or ‘csclean’ in the old clean task
but the behavior is not identical. For now, please
use deconvolver=’hogbom’ if you encounter problems.)

clarkstokes : Clark Clean operating separately per Stokes plane

(Note : ‘clarkstokes_exp’ is an alternate version. See above.)

	multiscaleMultiScale Clean [Cornwell, 2008]
	
	Smooth the residual image to multiple scale sizes

	Find the location and scale at which the peak occurs

	Add this multiscale component to the model image

	Subtract a scaled,smoothed,shifted PSF (within a small
patch size per scale) from all residual images

	Repeat from step 2

	mtmfsMulti-term (Multi Scale) Multi-Frequency Synthesis [Rau and Cornwell, 2011]
	
	Smooth each Taylor residual image to multiple scale sizes

	Solve a NTxNT system of equations per scale size to compute
Taylor coefficients for components at all locations

	
	Compute gradient chi-square and pick the Taylor coefficients
	and scale size at the location with maximum reduction in
chi-square

	Add multi-scale components to each Taylor-coefficient
model image

	Subtract scaled,smoothed,shifted PSF (within a small patch size
per scale) from all smoothed Taylor residual images

	Repeat from step 2

	memMaximum Entropy Method [Cornwell and Evans, 1985]
	
	Iteratively solve for values at all individual pixels via the
MEM method. It minimizes an objective function of

chi-square plus entropy (here, a measure of difference

between the current model and a flat prior model).

	(NoteThis MEM implementation is not very robust.
	Improvements will be made in the future.)

	scales List of scale sizes (in pixels) for multi-scale and mtmfs algorithms.
	–> scales=[0,6,20]
This set of scale sizes should represent the sizes
(diameters in units of number of pixels)
of dominant features in the image being reconstructed.

The smallest scale size is recommended to be 0 (point source),
the second the size of the synthesized beam and the third 3-5
times the synthesized beam, etc. For example, if the synthesized
beam is 10” FWHM and cell=2”,try scales = [0,5,15].

For numerical stability, the largest scale must be
smaller than the image (or mask) size and smaller than or
comparable to the scale corresponding to the lowest measured
spatial frequency (as a scale size much larger than what the
instrument is sensitive to is unconstrained by the data making
it harder to recovery from errors during the minor cycle).

nterms Number of Taylor coefficients in the spectral model

	nterms=1 : Assume flat spectrum source

	nterms=2 : Spectrum is a straight line with a slope

	nterms=N : A polynomial of order N-1

From a Taylor expansion of the expression of a power law, the
spectral index is derived as alpha = taylorcoeff_1 / taylorcoeff_0

Spectral curvature is similarly derived when possible.

The optimal number of Taylor terms depends on the available
signal to noise ratio, bandwidth ratio, and spectral shape of the
source as seen by the telescope (sky spectrum x PB spectrum).

nterms=2 is a good starting point for wideband EVLA imaging
and the lower frequency bands of ALMA (when fractional bandwidth
is greater than 10%) and if there is at least one bright source for
which a dynamic range of greater than few 100 is desired.

Spectral artifacts for the VLA often look like spokes radiating out from
a bright source (i.e. in the image made with standard mfs imaging).
If increasing the number of terms does not eliminate these artifacts,
check the data for inadequate bandpass calibration. If the source is away
from the pointing center, consider including wide-field corrections too.

	(NoteIn addition to output Taylor coefficient images .tt0,.tt1,etc
	images of spectral index (.alpha), an estimate of error on
spectral index (.alpha.error) and spectral curvature (.beta,
if nterms is greater than 2) are produced.
- These alpha, alpha.error and beta images contain

internal T/F masks based on a threshold computed
as peakresidual/10. Additional masking based on

.alpha/.alpha.error may be desirable.

	.alpha.error is a purely empirical estimate derived
from the propagation of error during the division of
two noisy numbers (alpha = xx.tt1/xx.tt0) where the
‘error’ on tt1 and tt0 are simply the values picked from
the corresponding residual images. The absolute value
of the error is not always accurate and it is best to interpret
the errors across the image only in a relative sense.)

	smallscalebias A numerical control to bias the scales when using multi-scale or mtmfs algorithms.
	The peak from each scale’s smoothed residual is
multiplied by (1 - smallscalebias * scale/maxscale)
to increase or decrease the amplitude relative to other scales,
before the scale with the largest peak is chosen.
Smallscalebias can be varied between -1.0 and 1.0.
A score of 0.0 gives all scales equal weight (default).

A score larger than 0.0 will bias the solution towards smaller scales.
A score smaller than 0.0 will bias the solution towards larger scales.
The effect of smallscalebias is more pronounced when using multi-scale relative to mtmfs.

restoration e.

Construct a restored image : imagename.image by convolving the model
image with a clean beam and adding the residual image to the result.
If a restoringbeam is specified, the residual image is also
smoothed to that target resolution before adding it in.

If a .model does not exist, it will make an empty one and create
the restored image from the residuals (with additional smoothing if needed).
With algorithm=’mtmfs’, this will construct Taylor coefficient maps from
the residuals and compute .alpha and .alpha.error.

restoringbeam ize to use.

	restoringbeam=’’ or [‘’]
A Gaussian fitted to the PSF main lobe (separately per image plane).

	restoringbeam=’10.0arcsec’
Use a circular Gaussian of this width for all planes

	restoringbeam=[‘8.0arcsec’,’10.0arcsec’,’45deg’]
Use this elliptical Gaussian for all planes

	restoringbeam=’common’
Automatically estimate a common beam shape/size appropriate for
all planes.

	NoteFor any restoring beam different from the native resolution
	the model image is convolved with the beam and added to
residuals that have been convolved to the same target resolution.

pbcor the output restored image

A new image with extension .image.pbcor will be created from
the evaluation of .image / .pb for all pixels above the specified pblimit.

	NoteStand-alone PB-correction can be triggered by re-running
	tclean with the appropriate imagename and with
niter=0, calcpsf=False, calcres=False, pbcor=True, vptable=’vp.tab’
(where vp.tab is the name of the vpmanager file.

See the inline help for the ‘vptable’ parameter)

	NoteMulti-term PB correction that includes a correction for the
	spectral index of the PB has not been enabled for the 4.7 release.
Please use the widebandpbcor task instead.
(Wideband PB corrections are required when the amplitude of the

brightest source is known accurately enough to be sensitive
to the difference in the PB gain between the upper and lower
end of the band at its location. As a guideline, the artificial spectral
index due to the PB is -1.4 at the 0.5 gain level and less than -0.2
at the 0.9 gain level at the middle frequency)

outlierfile Name of outlier-field image definitions

A text file containing sets of parameter=value pairs,
one set per outlier field.

Example : outlierfile=’outs.txt’

Contents of outs.txt :

imagename=tst1
nchan=1
imsize=[80,80]
cell=[8.0arcsec,8.0arcsec]
phasecenter=J2000 19:58:40.895 +40.55.58.543
mask=circle[[40pix,40pix],10pix]

imagename=tst2
nchan=1
imsize=[100,100]
cell=[8.0arcsec,8.0arcsec]
phasecenter=J2000 19:58:40.895 +40.56.00.000
mask=circle[[60pix,60pix],20pix]

The following parameters are currently allowed to be different between
the main field and the outlier fields (i.e. they will be recognized if found
in the outlier text file). If a parameter is not listed, the value is picked from
what is defined in the main task input.

imagename, imsize, cell, phasecenter, startmodel, mask
specmode, nchan, start, width, nterms, reffreq,
gridder, deconvolver, wprojplanes

	Note‘specmode’ is an option, so combinations of mfs and cube
	
for different image fields, for example, are supported.

	‘deconvolver’ and ‘gridder’ are also options that allow different
	imaging or deconvolution algorithm per image field.

For example, multiscale with wprojection and 16 w-term planes
on the main field and mtmfs with nterms=3 and wprojection
with 64 planes on a bright outlier source for which the frequency
dependence of the primary beam produces a strong effect that
must be modeled. The traditional alternative to this approach is
to first image the outlier, subtract it out of the data (uvsub) and
then image the main field.

	NoteIf you encounter a use-case where some other parameter needs
	to be allowed in the outlier file (and it is logical to do so), please
send us feedback. The above is an initial list.

weighting Weighting scheme (natural,uniform,briggs,superuniform,radial, briggsabs, briggsbwtaper)

During gridding of the dirty or residual image, each visibility value is
multiplied by a weight before it is accumulated on the uv-grid.
The PSF’s uv-grid is generated by gridding only the weights (weightgrid).

	weighting=’natural’Gridding weights are identical to the data weights
	from the MS. For visibilities with similar data weights,
the weightgrid will follow the sample density
pattern on the uv-plane. This weighting scheme
provides the maximum imaging sensitivity at the
expense of a possibly fat PSF with high sidelobes.
It is most appropriate for detection experiments
where sensitivity is most important.

	weighting=’uniform’Gridding weights per visibility data point are the
	original data weights divided by the total weight of
all data points that map to the same uv grid cell :
‘ data_weight / total_wt_per_cell ‘.

The weightgrid is as close to flat as possible resulting
in a PSF with a narrow main lobe and suppressed
sidelobes. However, since heavily sampled areas of
the uv-plane get down-weighted, the imaging
sensitivity is not as high as with natural weighting.
It is most appropriate for imaging experiments where
a well behaved PSF can help the reconstruction.

	weighting=’briggs’Gridding weights per visibility data point are given by
	
‘data_weight / (A *total_wt_per_cell + B) ‘ where
A and B vary according to the ‘robust’ parameter.

robust = -2.0 maps to A=1,B=0 or uniform weighting.
robust = +2.0 maps to natural weighting.
(robust=0.5 is equivalent to robust=0.0 in AIPS IMAGR.)

Robust/Briggs weighting generates a PSF that can
vary smoothly between ‘natural’ and ‘uniform’ and
allow customized trade-offs between PSF shape and
imaging sensitivity.

	weighting=’briggsabs’Experimental option.
	Same as Briggs except the formula is different A=
robust*robust and B is dependent on the
noise per visibility estimated. Giving noise=’0Jy’
is a not a reasonable option.
In this mode (or formula) robust values
from -2.0 to 0.0 only make sense (2.0 and
-2.0 will get the same weighting)

	weighting=’superuniform’This is similar to uniform weighting except that
	
the total_wt_per_cell is replaced by the
total_wt_within_NxN_cells around the uv cell of
interest. (N = subparameter ‘npixels’)

This method tends to give a PSF with inner
sidelobes that are suppressed as in uniform
weighting but with far-out sidelobes closer to
natural weighting. The peak sensitivity is also
closer to natural weighting.

	weighting=’radial’Gridding weights are given by ‘ data_weight * uvdistance ‘
	This method approximately minimizes rms sidelobes
for an east-west synthesis array.

	weighting=’briggsbwtaper’A modified version of Briggs weighting for cubes where an inverse uv taper,
	which is proportional to the fractional bandwidth of the entire cube,
is applied per channel. The objective is to modify cube (perchanweightdensity = True)
imaging weights to have a similar density to that of the continuum imaging weights.
This is currently an experimental weighting scheme being developed for ALMA.

For more details on weighting please see Chapter3
of Dan Briggs’ thesis (http://www.aoc.nrao.edu/dissertations/dbriggs)

robust Robustness parameter for Briggs weighting.

robust = -2.0 maps to uniform weighting.
robust = +2.0 maps to natural weighting.
(robust=0.5 is equivalent to robust=0.0 in AIPS IMAGR.)

noise noise parameter for briggs abs mode weighting
npixels Number of pixels to determine uv-cell size for super-uniform weighting

(0 defaults to -/+ 3 pixels)

	npixels – uv-box used for weight calculation
	
a box going from -npixel/2 to +npixel/2 on each side

around a point is used to calculate weight density.

npixels=2 goes from -1 to +1 and covers 3 pixels on a side.

	npixels=0 implies a single pixel, which does not make sense for
	superuniform weighting. Therefore, if npixels=0 it will
be forced to 6 (or a box of -3pixels to +3pixels) to cover
7 pixels on a side.

uvtaper uv-taper on outer baselines in uv-plane

Apply a Gaussian taper in addition to the weighting scheme specified
via the ‘weighting’ parameter. Higher spatial frequencies are weighted
down relative to lower spatial frequencies to suppress artifacts
arising from poorly sampled areas of the uv-plane. It is equivalent to
smoothing the PSF obtained by other weighting schemes and can be
specified either as a Gaussian in uv-space (eg. units of lambda)
or as a Gaussian in the image domain (eg. angular units like arcsec).

uvtaper = [bmaj, bmin, bpa]

NOTE: the on-sky FWHM in arcsec is roughly the uv taper/200 (klambda).
default: uvtaper=[]; no Gaussian taper applied
example: uvtaper=[‘5klambda’] circular taper

FWHM=5 kilo-lambda

uvtaper=[‘5klambda’,’3klambda’,’45.0deg’]
uvtaper=[‘10arcsec’] on-sky FWHM 10 arcseconds
uvtaper=[‘300.0’] default units are lambda

in aperture plane

niter Maximum number of iterations

A stopping criterion based on total iteration count.
Currently the parameter type is defined as an integer therefore the integer value
larger than 2147483647 will not be set properly as it causes an overflow.

Iterations are typically defined as the selecting one flux component
and partially subtracting it out from the residual image.

niter=0 : Do only the initial major cycle (make dirty image, psf, pb, etc)

niter larger than zero : Run major and minor cycles.

Note : Global stopping criteria vs major-cycle triggers

In addition to global stopping criteria, the following rules are
used to determine when to terminate a set of minor cycle iterations
and trigger major cycles [derived from Cotton-Schwab Clean, 1984]

	‘cycleniter’controls the maximum number of iterations per image
	plane before triggering a major cycle.

	‘cyclethreshold’Automatically computed threshold related to the
	
max sidelobe level of the PSF and peak residual.

Divergence, detected as an increase of 10% in peak residual from the
minimum so far (during minor cycle iterations)

The first criterion to be satisfied takes precedence.

	NoteIteration counts for cubes or multi-field images :
	
For images with multiple planes (or image fields) on which the
deconvolver operates in sequence, iterations are counted across
all planes (or image fields). The iteration count is compared with
‘niter’ only after all channels/planes/fields have completed their
minor cycles and exited either due to ‘cycleniter’ or ‘cyclethreshold’.
Therefore, the actual number of iterations reported in the logger
can sometimes be larger than the user specified value in ‘niter’.
For example, with niter=100, cycleniter=20,nchan=10,threshold=0,
a total of 200 iterations will be done in the first set of minor cycles
before the total is compared with niter=100 and it exits.

	NoteAdditional global stopping criteria include
	
	no change in peak residual across two major cycles

	a 50% or more increase in peak residual across one major cycle

gain Loop gain

Fraction of the source flux to subtract out of the residual image
for the CLEAN algorithm and its variants.

A low value (0.2 or less) is recommended when the sky brightness
distribution is not well represented by the basis functions used by
the chosen deconvolution algorithm. A higher value can be tried when
there is a good match between the true sky brightness structure and
the basis function shapes. For example, for extended emission,
multiscale clean with an appropriate set of scale sizes will tolerate
a higher loop gain than Clark clean (for example).

threshold Stopping threshold (number in units of Jy, or string)

A global stopping threshold that the peak residual (within clean mask)
across all image planes is compared to.

threshold = 0.005 : 5mJy
threshold = ‘5.0mJy’

	NoteA ‘cyclethreshold’ is internally computed and used as a major cycle
	
trigger. It is related what fraction of the PSF can be reliably
used during minor cycle updates of the residual image. By default
the minor cycle iterations terminate once the peak residual reaches
the first sidelobe level of the brightest source.

	‘cyclethreshold’ is computed as follows using the settings in
	parameters ‘cyclefactor’,’minpsffraction’,’maxpsffraction’,’threshold’ :

psf_fraction = max_psf_sidelobe_level * ‘cyclefactor’
psf_fraction = max(psf_fraction, ‘minpsffraction’);
psf_fraction = min(psf_fraction, ‘maxpsffraction’);
cyclethreshold = peak_residual * psf_fraction
cyclethreshold = max(cyclethreshold, ‘threshold’)

If nsigma is set (>0.0), the N-sigma threshold is calculated (see
the description under nsigma), then cyclethreshold is further modified as,

cyclethreshold = max(cyclethreshold, nsgima_threshold)

‘cyclethreshold’ is made visible and editable only in the
interactive GUI when tclean is run with interactive=True.

nsigma Multiplicative factor for rms-based threshold stopping

N-sigma threshold is calculated as nsigma * rms value per image plane determined
from a robust statistics. For nsigma > 0.0, in a minor cycle, a maximum of the two values,
the N-sigma threshold and cyclethreshold, is used to trigger a major cycle
(see also the descreption under ‘threshold’).
Set nsigma=0.0 to preserve the previous tclean behavior without this feature.
The top level parameter, fastnoise is relevant for the rms noise calculation which is used
to determine the threshold.

The parameter ‘nsigma’ may be an int, float, or a double.

	cycleniter Maximum number of minor-cycle iterations (per plane) before triggering
	a major cycle

For example, for a single plane image, if niter=100 and cycleniter=20,
there will be 5 major cycles after the initial one (assuming there is no
threshold based stopping criterion). At each major cycle boundary, if
the number of iterations left over (to reach niter) is less than cycleniter,
it is set to the difference.

	Notecycleniter applies per image plane, even if cycleniter x nplanes
	gives a total number of iterations greater than ‘niter’. This is to
preserve consistency across image planes within one set of minor
cycle iterations.

cyclefactor Scaling on PSF sidelobe level to compute the minor-cycle stopping threshold.

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

cyclefactor=1.0 results in a cyclethreshold at the first sidelobe level of
the brightest source in the residual image before the minor cycle starts.

cyclefactor=0.5 allows the minor cycle to go deeper.
cyclefactor=2.0 triggers a major cycle sooner.

minpsffraction PSF fraction that marks the max depth of cleaning in the minor cycle

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

For example, minpsffraction=0.5 will stop cleaning at half the height of
the peak residual and trigger a major cycle earlier.

maxpsffraction PSF fraction that marks the minimum depth of cleaning in the minor cycle

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

For example, maxpsffraction=0.8 will ensure that at least the top 20
percent of the source will be subtracted out in the minor cycle even if
the first PSF sidelobe is at the 0.9 level (an extreme example), or if the
cyclefactor is set too high for anything to get cleaned.

interactive Modify masks and parameters at runtime

interactive=True will trigger an interactive GUI at every major cycle
boundary (after the major cycle and before the minor cycle).

The interactive mode is currently not available for parallel cube imaging (please also
refer to the Note under the documentation for ‘parallel’ below).

Options for runtime parameter modification are :

	Interactive clean maskDraw a 1/0 mask (appears as a contour) by hand.
	If a mask is supplied at the task interface or if
automasking is invoked, the current mask is
displayed in the GUI and is available for manual
editing.

	NoteIf a mask contour is not visible, please
	check the cursor display at the bottom of
GUI to see which parts of the mask image
have ones and zeros. If the entire mask=1
no contours will be visible.

	Operation buttons– Stop execution now (restore current model and exit)
	
	– Continue on until global stopping criteria are reached
	without stopping for any more interaction

	– Continue with minor cycles and return for interaction
	after the next major cycle.

Iteration control : – max cycleniter : Trigger for the next major cycle

The display begins with
[min(cycleniter, niter - itercount)]
and can be edited by hand.

—iterations left : The display begins with [niter-itercount]
and can be edited to increase or
decrease the total allowed niter.

– threshold : Edit global stopping threshold

—cyclethreshold : The display begins with the
automatically computed value
(see Note in help for ‘threshold’),
and can be edited by hand.

All edits will be reflected in the log messages that appear
once minor cycles begin.

	[For scripting purposes, replacing True/False with 1/0 will get tclean to
	return an imaging summary dictionary to python]

usemask Type of mask(s) to be used for deconvolution

	user: (default) mask image(s) or user specified region file(s) or string CRTF expression(s)
	subparameters: mask, pbmask

	pb: primary beam mask
	subparameter: pbmask

	Example: usemask=”pb”, pbmask=0.2
	Construct a mask at the 0.2 pb gain level.
(Currently, this option will work only with
gridders that produce .pb (i.e. mosaic and awproject)
or if an externally produced .pb image exists on disk)

	auto-multithreshauto-masking by multiple thresholds for deconvolution
	
	subparameterssidelobethreshold, noisethreshold, lownoisethreshold, negativethrehsold, smoothfactor,
	minbeamfrac, cutthreshold, pbmask, growiterations, dogrowprune, minpercentchange, verbose

Additional top level parameter relevant to auto-multithresh: fastnoise

if pbmask is >0.0, the region outside the specified pb gain level is excluded from
image statistics in determination of the threshold.

	Note: By default the intermediate mask generated by automask at each deconvolution cycle
	is over-written in the next cycle but one can save them by setting
the environment variable, SAVE_ALL_AUTOMASKS=”true”.
(e.g. in the CASA prompt, os.environ[‘SAVE_ALL_AUTOMASKS’]=”true”)
The saved CASA mask image name will be imagename.mask.autothresh#, where
is the iteration cycle number.

mask Mask (a list of image name(s) or region file(s) or region string(s)

The name of a CASA image or region file or region string that specifies
a 1/0 mask to be used for deconvolution. Only locations with value 1 will
be considered for the centers of flux components in the minor cycle.
If regions specified fall completely outside of the image, tclean will throw an error.

Manual mask options/examples :

	mask=’xxx.mask’Use this CASA image named xxx.mask and containing
	ones and zeros as the mask.
If the mask is only different in spatial coordinates from what is being made
it will be resampled to the target coordinate system before being used.
The mask has to have the same shape in velocity and Stokes planes
as the output image. Exceptions are single velocity and/or single
Stokes plane masks. They will be expanded to cover all velocity and/or
Stokes planes of the output cube.

	[NoteIf an error occurs during image resampling or
	if the expected mask does not appear, please try
using tasks ‘imregrid’ or ‘makemask’ to resample
the mask image onto a CASA image with the target
shape and coordinates and supply it via the ‘mask’
parameter.]

	mask=’xxx.crtf’A text file with region strings and the following on the first line
	(#CRTFv0 CASA Region Text Format version 0)
This is the format of a file created via the viewer’s region
tool when saved in CASA region file format.

mask=’circle[[40pix,40pix],10pix]’ : A CASA region string.

mask=[‘xxx.mask’,’xxx.crtf’, ‘circle[[40pix,40pix],10pix]’] : a list of masks

	NoteMask images for deconvolution must contain 1 or 0 in each pixel.
	Such a mask is different from an internal T/F mask that can be
held within each CASA image. These two types of masks are not
automatically interchangeable, so please use the makemask task
to copy between them if you need to construct a 1/0 based mask
from a T/F one.

	NoteWork is in progress to generate more flexible masking options and
	enable more controls.

pbmask Sub-parameter for usemask=’auto-multithresh’: primary beam mask

	Examplespbmask=0.0 (default, no pb mask)
	pbmask=0.2 (construct a mask at the 0.2 pb gain level)

sidelobethreshold Sub-parameter for “auto-multithresh”: mask threshold based on sidelobe levels: sidelobethreshold * max_sidelobe_level * peak residual
noisethreshold Sub-parameter for “auto-multithresh”: mask threshold based on the noise level: noisethreshold * rms + location (=median)

The rms is calculated from MAD with rms = 1.4826*MAD.

lownoisethreshold Sub-parameter for “auto-multithresh”: mask threshold to grow previously masked regions via binary dilation: lownoisethreshold * rms in residual image + location (=median)

The rms is calculated from MAD with rms = 1.4826*MAD.

negativethreshold Sub-parameter for “auto-multithresh”: mask threshold for negative features: -1.0* negativethreshold * rms + location(=median)

The rms is calculated from MAD with rms = 1.4826*MAD.

smoothfactor Sub-parameter for “auto-multithresh”: smoothing factor in a unit of the beam
minbeamfrac Sub-parameter for “auto-multithresh”: minimum beam fraction in size to prune masks smaller than mimbeamfrac * beam

<=0.0 : No pruning

cutthreshold Sub-parameter for “auto-multithresh”: threshold to cut the smoothed mask to create a final mask: cutthreshold * peak of the smoothed mask
growiterations Sub-parameter for “auto-multithresh”: Maximum number of iterations to perform using binary dilation for growing the mask
dogrowprune Experimental sub-parameter for “auto-multithresh”: Do pruning on the grow mask
minpercentchange If the change in the mask size in a particular channel is less than minpercentchange, stop masking that channel in subsequent cycles. This check is only applied when noise based threshold is used and when the previous clean major cycle had a cyclethreshold value equal to the clean threshold. Values equal to -1.0 (or any value less than 0.0) will turn off this check (the default). Automask will still stop masking if the current channel mask is an empty mask and the noise threshold was used to determine the mask.
verbose he summary of automasking at the end of each automasking process

is printed in the logger. Following information per channel will be listed in the summary.

chan: channel number
masking?: F - stop updating automask for the subsequent iteration cycles
RMS: robust rms noise
peak: peak in residual image
thresh_type: type of threshold used (noise or sidelobe)
thresh_value: the value of threshold used
N_reg: number of the automask regions
N_pruned: number of the automask regions removed by pruning
N_grow: number of the grow mask regions
N_grow_pruned: number of the grow mask regions removed by pruning
N_neg_pix: number of pixels for negative mask regions

Note that for a large cube, extra logging may slow down the process.

	fastnoise mask (user=’multi-autothresh’) and/or n-sigma stopping threshold (nsigma>0.0) are/is used. If it is set to True, a simpler but faster noise calucation is used.
	In this case, the threshold values are determined based on classic statistics (using all
unmasked pixels for the calculations).

If it is set to False, the new noise calculation
method is used based on pre-existing mask.

Case 1: no exiting mask
Calculate image statistics using Chauvenet algorithm

Case 2: there is an existing mask
Calculate image statistics by classical method on the region
outside the mask and inside the primary beam mask.

In all cases above RMS noise is calculated from MAD.

	restart images (and start from an existing model image)
	or automatically increment the image name and make a new image set.

	TrueRe-use existing images. If imagename.model exists the subsequent
	
run will start from this model (i.e. predicting it using current gridder
settings and starting from the residual image). Care must be taken
when combining this option with startmodel. Currently, only one or
the other can be used.

	startmodel=’’, imagename.model exists :
	
	Start from imagename.model

	startmodel=’xxx’, imagename.model does not exist :
	
	Start from startmodel

	startmodel=’xxx’, imagename.model exists :
	

	Exit with an error message requesting the user to pick
only one model. This situation can arise when doing one
run with startmodel=’xxx’ to produce an output
imagename.model that includes the content of startmodel,
and wanting to restart a second run to continue deconvolution.
Startmodel should be set to ‘’ before continuing.

If any change in the shape or coordinate system of the image is
desired during the restart, please change the image name and
use the startmodel (and mask) parameter(s) so that the old model
(and mask) can be regridded to the new coordinate system before starting.

	FalseA convenience feature to increment imagename with ‘_1’, ‘_2’,
	
etc as suffixes so that all runs of tclean are fresh starts (without
having to change the imagename parameter or delete images).

This mode will search the current directory for all existing
imagename extensions, pick the maximum, and adds 1.
For imagename=’try’ it will make try.psf, try_2.psf, try_3.psf, etc.

This also works if you specify a directory name in the path :
imagename=’outdir/try’. If ‘./outdir’ does not exist, it will create it.
Then it will search for existing filenames inside that directory.

If outlier fields are specified, the incrementing happens for each
of them (since each has its own ‘imagename’). The counters are
synchronized across imagefields, to make it easier to match up sets
of output images. It adds 1 to the ‘max id’ from all outlier names
on disk. So, if you do two runs with only the main field

(imagename=’try’), and in the third run you add an outlier with
imagename=’outtry’, you will get the following image names
for the third run : ‘try_3’ and ‘outtry_3’ even though
‘outry’ and ‘outtry_2’ have not been used.

savemodel Options to save model visibilities (none, virtual, modelcolumn)

Often, model visibilities must be created and saved in the MS
to be later used for self-calibration (or to just plot and view them).

	noneDo not save any model visibilities in the MS. The MS is opened
	in readonly mode.

Model visibilities can be predicted in a separate step by
restarting tclean with niter=0,savemodel=virtual or modelcolumn
and not changing any image names so that it finds the .model on
disk (or by changing imagename and setting startmodel to the
original imagename).

	virtualIn the last major cycle, save the image model and state of the
	gridder used during imaging within the SOURCE subtable of the
MS. Images required for de-gridding will also be stored internally.
All future references to model visibilities will activate the
(de)gridder to compute them on-the-fly. This mode is useful
when the dataset is large enough that an additional model data
column on disk may be too much extra disk I/O, when the
gridder is simple enough that on-the-fly recomputing of the
model visibilities is quicker than disk I/O.
For e.g. that gridder=’awproject’ does not support virtual model.

	modelcolumnIn the last major cycle, save predicted model visibilities
	in the MODEL_DATA column of the MS. This mode is useful when
the de-gridding cost to produce the model visibilities is higher
than the I/O required to read the model visibilities from disk.
This mode is currently required for gridder=’awproject’.
This mode is also required for the ability to later pull out
model visibilities from the MS into a python array for custom
processing.

	Note 1The imagename.model image on disk will always be constructed
	if the minor cycle runs. This savemodel parameter applies only to
model visibilities created by de-gridding the model image.

	Note 2It is possible for an MS to have both a virtual model
	as well as a model_data column, but under normal operation,
the last used mode will get triggered. Use the delmod task to
clear out existing models from an MS if confusion arises.

	Note 3: when parallel=True, use savemodel=’none’; Other options are not yet ready
	for use in parallel. If model visibilities need to be saved (virtual or modelcolumn):
please run tclean in serial mode with niter=0; after the parallel run

calcres Calculate initial residual image

This parameter controls what the first major cycle does.

calcres=False with niter greater than 0 will assume that
a .residual image already exists and that the minor cycle can
begin without recomputing it.

calcres=False with niter=0 implies that only the PSF will be made
and no data will be gridded.

calcres=True requires that calcpsf=True or that the .psf and .sumwt
images already exist on disk (for normalization purposes).

	Usage exampleFor large runs (or a pipeline scripts) it may be
	useful to first run tclean with niter=0 to create
an initial .residual to look at and perhaps make
a custom mask for. Imaging can be resumed
without recomputing it.

calcpsf Calculate PSF

This parameter controls what the first major cycle does.

calcpsf=False will assume that a .psf image already exists
and that the minor cycle can begin without recomputing it.

	psfcutoff When the .psf image is created a 2 dimensional Gaussian is fit to the main lobe of the PSF.
	Which pixels in the PSF are fitted is determined by psfcutoff.
The default value of psfcutoff is 0.35 and can varied from 0.01 to 0.99.
Fitting algorithm:

	
	A region of 41 x 41 pixels around the peak of the PSF is compared against the psfcutoff.
	Sidelobes are ignored by radially searching from the PSF peak.

	Calculate the bottom left corner (blc) and top right corner (trc) from the points. Expand blc and trc with a number of pixels (5).

	Create a new sub-matrix from blc and trc.

	Interpolate matrix to a target number of points (3001) using CUBIC spline.

	
	All the non-sidelobe points, in the interpolated matrix, that are above the psfcutoff are used to fit a Gaussian.
	A Levenberg-Marquardt algorithm is used.

	
	If the fitting fails the algorithm is repeated with the psfcutoff decreased (psfcutoff=psfcutoff/1.5).
	A message in the log will apear if the fitting fails along with the new value of psfcutoff.
This will be done up to 50 times if fitting fails.

This Gaussian beam is defined by a major axis, minor axis, and position angle.
During the restoration process, this Gaussian beam is used as the Clean beam.
Varying psfcutoff might be useful for producing a better fit for highly non-Gaussian PSFs, however, the resulting fits should be carefully checked.
This parameter should rarely be changed.

(This is not the support size for clark clean.)

parallel Run major cycles in parallel (this feature is experimental)

Parallel tclean will run only if casa has already been started using mpirun.
Please refer to HPC documentation for details on how to start this on your system.

Example : mpirun -n 3 -xterm 0 which casa

	Continuum Imaging :
	
	Data are partitioned (in time) into NProc pieces

	Gridding/iFT is done separately per partition

	Images (and weights) are gathered and then normalized

	One non-parallel minor cycle is run

	Model image is scattered to all processes

	Major cycle is done in parallel per partition

	Cube Imaging :
	
	Data and Image coordinates are partitioned (in freq) into NProc pieces

	Each partition is processed independently (major and minor cycles)

	All processes are synchronized at major cycle boundaries for convergence checks

	At the end, cubes from all partitions are concatenated along the spectral axis

	Note 1Iteration control for cube imaging is independent per partition.
	

	
	There is currently no communication between them to synchronize
	information such as peak residual and cyclethreshold. Therefore,
different chunks may trigger major cycles at different levels.

	For cube imaging in parallel, there is currently no interactive masking.

(Proper synchronization of iteration control is work in progress.)

 suncasa.suncasatasks.signalsmooth

suncasa.suncasatasks.signalsmooth

cookb_signalsmooth.py

from: http://scipy.org/Cookbook/SignalSmooth

Module Contents

Functions

	smooth(x[, window_len, window])

	smooth the data using a window with requested size.

	gauss_kern(size[, sizey])

	Returns a normalized 2D gauss kernel array for convolutions

	blur_image(im, n[, ny])

	blurs the image by convolving with a gaussian kernel of typical

	smooth_demo()

	

Attributes

	Z

	

	
suncasa.suncasatasks.signalsmooth.smooth(x, window_len=10, window='hanning')

	smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.

	input:
	x: the input signal
window_len: the dimension of the smoothing window
window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’

flat window will produce a moving average smoothing.

	output:
	the smoothed signal

example:

import numpy as np
t = np.linspace(-2,2,0.1)
x = np.sin(t)+np.random.randn(len(t))*0.1
y = smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter

NOTE from B. Chen: slightly modified the reflected copies: window_len-1 points are added to both ends.
Previous one is not exactly the reflection, the indices are off by one pixel

	
suncasa.suncasatasks.signalsmooth.gauss_kern(size, sizey=None)

	Returns a normalized 2D gauss kernel array for convolutions

	
suncasa.suncasatasks.signalsmooth.blur_image(im, n, ny=None)

	blurs the image by convolving with a gaussian kernel of typical
size n. The optional keyword argument ny allows for a different
size in the y direction.

	
suncasa.suncasatasks.signalsmooth.smooth_demo()

	

	
suncasa.suncasatasks.signalsmooth.Z

	

 suncasa.suncasatasks.subvs

suncasa.suncasatasks.subvs

Module Contents

Classes

	_subvs

	subvs ---- Vector-subtraction in UV using selected time ranges and spectral channels as background

Attributes

	_pc

	

	subvs

	

	
suncasa.suncasatasks.subvs._pc

	

	
class suncasa.suncasatasks.subvs._subvs

	subvs —- Vector-subtraction in UV using selected time ranges and spectral channels as background

Split is the general purpose program to make a new data set that is a
subset or averaged form of an existing data set. General selection
parameters are included, and one or all of the various data columns
(DATA, LAG_DATA and/or FLOAT_DATA, and possibly MODEL_DATA and/or
CORRECTED_DATA) can be selected.

Split is often used after the initial calibration of the data to make a
smaller measurement set with only the data that will be used in
further flagging, imaging and/or self-calibration. split can
average over frequency (channels) and time (integrations).

——— parameter descriptions ———————————————

vis Name of input measurement set
outputvis Name of output measurement set
timerange Select the time range of the input visbility to be subtracted from
spw Select the spectral channels of the input visibility to be subtracted from
mode Operation: linear, highpass
subtime1 Select the first time range as the background for uv subtraction
subtime2 Select the second time range as the background for uv subtraction
smoothaxis Select the axis along which smooth is performed
smoothtype Select the smooth type
smoothwidth Select the width of the smoothing window
splitsel Split the selected timerange and spectral channels as outputvis
reverse Reverse the sign of the background-subtracted data (for absorptive structure)
overwrite Overwrite the already existing output measurement set

——— examples ———————————————————–

Subvs is a task to do UV vector-subtraction, by selecting time ranges
in the data as background. Subvs can be used to subtract the background
continuum emission to separate the time-dependent emission, e.g. solar
coherent radio bursts.

Keyword arguments:
vis – Name of input visibility file (MS)
default: none; example: vis=’ngc5921.ms’
outputvis – Name of output uv-subtracted visibility file (MS)
default: none; example: outputvis=’ngc5921_src.ms’
timerange – Time range of performing the UV subtraction:
default=’’ means all times. examples:
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
timerange = ‘hh:mm:ss~hh:mm:ss’
spw – Select spectral window/channel.
default = ‘’ all the spectral channels. Example: spw=’0:1~20’
mode – operation mode
default ‘linear’
mode = ‘linear’: use a linear fit for the background to be subtracted
mode = ‘lowpass’: act as a lowpass filter—smooth the data using different smooth
types and smooth window size. Can be performed along either time
or frequency axis
mode = ‘highpass’: act as a highpass filter—smooth the data first, and
subtract the smoothed data from the original. Can be performed along either time
or frequency axis
mode = ‘linear’ expandable parameters:
subtime1 – Time range 1 of the background to be subtracted from the data
default=’’ means all times. format:
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
timerange = ‘hh:mm:ss~hh:mm:ss’
subtime2 – Time range 2 of the backgroud to be subtracted from the data
default=’’ means all times. examples:
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
timerange = ‘hh:mm:ss~hh:mm:ss’
mode = ‘lowpass’ or ‘highpass’ expandable parameters:
smoothaxis – axis of smooth
Default: ‘time’
smoothaxis = ‘time’: smooth is along the time axis
smoothaxis = ‘freq’: smooth is along the frequency axis
smoothtype – type of the smooth depending on the convolving kernel
Default: ‘flat’
smoothtype = ‘flat’: convolving kernel is a flat rectangle,
equivalent to a boxcar moving smooth
smoothtype = ‘hanning’: Hanning smooth kernel. See numpy.hanning
smoothtype = ‘hamming’: Hamming smooth kernel. See numpy.hamming
smoothtype = ‘bartlett’: Bartlett smooth kernel. See numpy.bartlett
smoothtype = ‘blackman’: Blackman smooth kernel. See numpy.blackman
smoothwidth – width of the smooth kernel
Default: 5
Examples: smoothwidth=5, meaning the width is 5 pixels
splitsel – True or False. default = False. If splitsel = False, then the entire input
measurement set is copied as the output measurement set (outputvis), with
background subtracted at selected timerange and spectral channels.
If splitsel = True,then only the selected timerange and spectral channels
are copied into the output measurement set (outputvis).
reverse – True or False. default = False. If reverse = False, then the times indicated
by subtime1 and/or subtime2 are treated as background and subtracted; If reverse
= True, then reverse the sign of the background-subtracted data. The option can
be used for mapping absorptive structure.
overwrite – True or False. default = False. If overwrite = True and
outputvis already exists, the selected subtime and spw in the
output measurment set will be replaced with background subtracted
visibilities

	
_info_group_ = 'misc'

	

	
_info_desc_ = 'Vector-subtraction in UV using selected time ranges and spectral channels as background'

	

	
__call__(vis='', outputvis='', timerange='', spw='', mode='linear', subtime1='', subtime2='', smoothaxis='time', smoothtype='flat', smoothwidth=int(5), splitsel=True, reverse=False, overwrite=False)

	

	
suncasa.suncasatasks.subvs.subvs

	

 suncasa.utils

suncasa.utils

Submodules

	suncasa.utils.DButil

	suncasa.utils.fit_planet_position

	suncasa.utils.helio_coordinates

	suncasa.utils.helioimage2fits

	suncasa.utils.idlsav2sunmap

	suncasa.utils.jdutil

	suncasa.utils.lightcurves

	suncasa.utils.lineticks

	suncasa.utils.mod_slftbs

	suncasa.utils.mstools

	suncasa.utils.plot_map

	suncasa.utils.plot_mapX

	suncasa.utils.pltutils

	suncasa.utils.qlookplot

	suncasa.utils.radio_data_fetch

	suncasa.utils.signal_utils

	suncasa.utils.signalsmooth

	suncasa.utils.stackplot

	suncasa.utils.stackplotX

	suncasa.utils.stputils

 suncasa.utils.DButil

suncasa.utils.DButil

Module Contents

Classes

	ButtonsPlayCTRL

	Produce A play/stop button widget for bokeh plot

Functions

	img2html_movie(imgprefix[, outname, img_fmt])

	

	my_timer(orig_func)

	

	spectrogram2wav(spec[, threshld, gama, fs, t_length, ...])

	Convert spectrogram to audio in WAV format

	smooth(x[, window_len, window])

	smooth the data using a window with requested size.

	img2movie([imgprefix, img_ext, outname, size, ...])

	
	param imgprefix:

	

	image_fill_gap(image)

	

	getspwfromfreq(vis, freqrange)

	

	initconfig(suncasa_dir)

	

	ProgressBar(iteration, total[, prefix, suffix, ...])

	Call in a loop to create terminal progress bar

	getcurtimstr([prefix, suffix])

	

	getlatestfile([directory, prefix, suffix])

	

	loadjsonfile(jsonfile[, mustexist])

	

	updatejsonfile(jsonfile, data)

	

	getSDOdir(config, database_dir, suncasa_dir)

	

	getsdodir(filename[, unique])

	return a list of the data path relative to the SDOdir

	FileNotInList(file2chk, filelist)

	return the index of files not in the list

	getfreeport()

	

	normalize_aiamap(aiamap)

	do expisure normalization of an aia map

	tplt(mapcube)

	

	sdo_aia_scale_hdr(amap[, sigma])

	

	sdo_aia_scale_dict([wavelength, imagetype])

	rescale the aia image

	sdo_aia_scale([image, wavelength])

	rescale the aia image

	insertchar(source_str, insert_str, pos)

	

	readsdofile([datadir, wavelength, trange, isexists, ...])

	read sdo file from local database

	readsdofileX([datadir, filelist, wavelength, trange, ...])

	read sdo file from local database

	findDist(x, y)

	

	paramspline(x, y, length[, s])

	

	polyfit(x, y, length, deg[, keepxorder])

	

	htfit_warren2011(x, y, cutlength)

	

	spline(x, y, length[, s])

	

	get_curve_grad(x, y)

	get the grad of at data point

	improfile(z, xi, yi[, interp])

	Pixel-value cross-section along line segment in an image

	canvaspix_to_data(smap, x, y)

	

	data_to_mappixel(smap, x, y)

	

	polsfromfitsheader(header)

	get polarisation information from fits header

	headerfix(header)

	

	freqsfromfitsheader(header)

	get frequency in GHz from fits header

	transfitdict2DF(datain[, gaussfit, getcentroid])

	convert the results from pimfit or pmaxfit tasks to pandas DataFrame structure.

	getcolctinDF(dspecDF, col)

	return the count of how many times of the element starts with col occurs in columns of dspecDF

	dspecDFfilter(dspecDF, pol)

	filter the unselect polarisation from dspecDF

	dspecDF2text(DFfile[, outfile])

	

	smapmeshgrid2(smap[, angle, rescale, origin])

	

	map2wcsgrids(snpmap[, cell, antialiased])

	
	param snpmap:

	

	smapradialfilter(sunpymap[, factor, grid])

	

	regridimage(values, x, y[, grid, resize])

	re-grid the data on a regular grid with uneven grid spacing to an uniform grid

	regridspec(spec, x, y[, nxmax, nymax, interp])

	
	param spec:

	ndarray of float or complex, shape (npol,nbl,nf,nt) Data values.

	get_contour_data(X, Y, Z[, levels])

	

	c_correlate(a, v[, returnx])

	

	c_correlateX(a, v[, returnx, returnav, s])

	
	param a:

	

	XCorrMap(z, x, y[, doxscale])

	get the cross correlation map along y axis

Attributes

	__author__

	

	__email__

	

	
suncasa.utils.DButil.__author__ = ['Sijie Yu']

	

	
suncasa.utils.DButil.__email__ = 'sijie.yu@njit.edu'

	

	
suncasa.utils.DButil.img2html_movie(imgprefix, outname='movie', img_fmt='png')

	

	
suncasa.utils.DButil.my_timer(orig_func)

	

	
suncasa.utils.DButil.spectrogram2wav(spec, threshld=None, gama=1, fs=1.0, t_length=None, w=1, wavfile='output.wav')

	Convert spectrogram to audio in WAV format
:param spec: spec.shape (nfreq, ntime)
:param threshld: below which is set to be threshold
:param gama:
:param fs:
:param t_length: time duration of output WAV file
:param w: width of the smooth window, if apply
:param wavfile:
:return:

	
suncasa.utils.DButil.smooth(x, window_len=11, window='hanning')

	smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.

	input:
	x: the input signal
window_len: the dimension of the smoothing window; should be an odd integer
window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’

flat window will produce a moving average smoothing.

	output:
	the smoothed signal

example:

t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter

NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.

	
suncasa.utils.DButil.img2movie(imgprefix='', img_ext='png', outname='movie', size=None, start_num=0, crf=15, fps=10, overwrite=False, crop=[], title=[], dpi=200, keeptmp=False, usetmp=False, autorotate=True)

	
	Parameters:

	
	imgprefix –

	img_ext –

	outname –

	size –

	start_num –

	crf –

	fps –

	overwrite –

	title – the timestamp on each frame

	crop – 4-tuple of integer specifies the cropping pixels [x0, x1, y0, y1]

	dpi –

	keeptmp –

	usetmp – use the image in the default tmp folder

	Returns:

	

	
suncasa.utils.DButil.image_fill_gap(image)

	

	
suncasa.utils.DButil.getspwfromfreq(vis, freqrange)

	

	
suncasa.utils.DButil.initconfig(suncasa_dir)

	

	
suncasa.utils.DButil.ProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, empfill=' ', fill='#')

	Call in a loop to create terminal progress bar
@params:

iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
empfill - Optional : empty bar fill character (Str)

	
suncasa.utils.DButil.getcurtimstr(prefix='CleanID_', suffix='')

	

	
suncasa.utils.DButil.getlatestfile(directory='./', prefix='CleanID_', suffix='')

	

	
suncasa.utils.DButil.loadjsonfile(jsonfile, mustexist=True)

	

	
suncasa.utils.DButil.updatejsonfile(jsonfile, data)

	

	
suncasa.utils.DButil.getSDOdir(config, database_dir, suncasa_dir)

	

	
suncasa.utils.DButil.getsdodir(filename, unique=True)

	return a list of the data path relative to the SDOdir
:param filename:
:return:

	
suncasa.utils.DButil.FileNotInList(file2chk, filelist)

	return the index of files not in the list
:param file2chk: files to be check
:param filelist: the list
:return:

	
suncasa.utils.DButil.getfreeport()

	

	
suncasa.utils.DButil.normalize_aiamap(aiamap)

	do expisure normalization of an aia map
:param aia map made from sunpy.map:
:return: normalised aia map

	
suncasa.utils.DButil.tplt(mapcube)

	

	
suncasa.utils.DButil.sdo_aia_scale_hdr(amap, sigma=None)

	

	
suncasa.utils.DButil.sdo_aia_scale_dict(wavelength=None, imagetype='image')

	rescale the aia image
:param image: normalised aia image data
:param wavelength:
:return: byte scaled image data

	
suncasa.utils.DButil.sdo_aia_scale(image=None, wavelength=None)

	rescale the aia image
:param image: normalised aia image data
:param wavelength:
:return: byte scaled image data

	
suncasa.utils.DButil.insertchar(source_str, insert_str, pos)

	

	
suncasa.utils.DButil.readsdofile(datadir=None, wavelength=None, trange=None, isexists=False, timtol=1)

	read sdo file from local database
:param datadir:
:param wavelength:
:param trange: the timestamp or timerange in Julian days. if is timerange, return a list of files in the timerange
:param isexists: check if file exist. if files exist, return file name
:param timtol: time difference tolerance in days for considering data as the same timestamp
:return:

	
suncasa.utils.DButil.readsdofileX(datadir=None, filelist=None, wavelength=None, trange=None, isexists=False, timtol=1)

	read sdo file from local database
:param datadir:
:param wavelength:
:param trange: time object. the timestamp or timerange. if is timerange, return a list of files in the timerange
:param isexists: check if file exist. if files exist, return file name
:param timtol: time difference tolerance in days for considering data as the same timestamp
:return:

	
suncasa.utils.DButil.findDist(x, y)

	

	
suncasa.utils.DButil.paramspline(x, y, length, s=0)

	

	
suncasa.utils.DButil.polyfit(x, y, length, deg, keepxorder=False)

	

	
suncasa.utils.DButil.htfit_warren2011(x, y, cutlength)

	

	
suncasa.utils.DButil.spline(x, y, length, s=0)

	

	
suncasa.utils.DButil.get_curve_grad(x, y)

	get the grad of at data point
:param x:
:param y:
:return: grad,posang

	
suncasa.utils.DButil.improfile(z, xi, yi, interp='cubic')

	Pixel-value cross-section along line segment in an image
:param z: an image array
:param xi and yi: equal-length vectors specifying the pixel coordinates of the endpoints of the line segment
:param interp: interpolation type to sampling, ‘nearest’ or ‘cubic’
:return: the intensity values of pixels along the line

	
suncasa.utils.DButil.canvaspix_to_data(smap, x, y)

	

	
suncasa.utils.DButil.data_to_mappixel(smap, x, y)

	

	
suncasa.utils.DButil.polsfromfitsheader(header)

	get polarisation information from fits header
:param header: fits header
:return pols: polarisation stokes

	
suncasa.utils.DButil.headerfix(header)

	

	
suncasa.utils.DButil.freqsfromfitsheader(header)

	get frequency in GHz from fits header
:param header: fits header
:return pols: polarisation stokes

	
suncasa.utils.DButil.transfitdict2DF(datain, gaussfit=True, getcentroid=False)

	convert the results from pimfit or pmaxfit tasks to pandas DataFrame structure.
:param datain: The component list from pimfit or pmaxfit tasks
:param gaussfit: True if the results is from pimfit, otherwise False.
:param getcentroid: If True returns the centroid
:return: the pandas DataFrame structure.

	
suncasa.utils.DButil.getcolctinDF(dspecDF, col)

	return the count of how many times of the element starts with col occurs in columns of dspecDF
:param dspecDF:
:param col: the start string
:return: the count and items

	
suncasa.utils.DButil.dspecDFfilter(dspecDF, pol)

	filter the unselect polarisation from dspecDF
:param dspecDF: the original dspecDF
:param pol: selected polarisation, dtype = string
:return: the output dspecDF

	
suncasa.utils.DButil.dspecDF2text(DFfile, outfile=None)

	

	
suncasa.utils.DButil.smapmeshgrid2(smap, angle=None, rescale=1.0, origin=1)

	

	
suncasa.utils.DButil.map2wcsgrids(snpmap, cell=True, antialiased=True)

	
	Parameters:

	
	snpmap –

	cell – if True, return the coordinates of the pixel centers. if False, return the coordinates of the pixel boundaries

	Returns:

	

	
suncasa.utils.DButil.smapradialfilter(sunpymap, factor=5, grid=None)

	

	
suncasa.utils.DButil.regridimage(values, x, y, grid=None, resize=[1.0, 1.0])

	re-grid the data on a regular grid with uneven grid spacing to an uniform grid
:param values: The image data on the regular grid
:param x: the points defining the regular grid in x
:param y: the points defining the regular grid in y
:param grid: new uniform mesh grid [gridx,gridy]
:param resize: list of re-size ratio factors of x and y. if resize is not [1.0,1.0], grid is neglected.
:return: re-gridded image

	
suncasa.utils.DButil.regridspec(spec, x, y, nxmax=None, nymax=None, interp=False)

	
	Parameters:

	
	spec – ndarray of float or complex, shape (npol,nbl,nf,nt) Data values.

	x – Data point x coordinates.

	y – Data point y coordinates.

	nxmax –

	nymax –

	Returns:

	

	
suncasa.utils.DButil.get_contour_data(X, Y, Z, levels=[0.5, 0.7, 0.9])

	

	
suncasa.utils.DButil.c_correlate(a, v, returnx=False)

	

	
suncasa.utils.DButil.c_correlateX(a, v, returnx=False, returnav=False, s=0)

	
	Parameters:

	
	a –

	v – a and v can be a dict in following format {‘x’:[],’y’:[]}. The length of a and v can be different.

	returnx –

	Returns:

	

	
suncasa.utils.DButil.XCorrMap(z, x, y, doxscale=True)

	get the cross correlation map along y axis
:param z: data
:param x: x axis
:param y: y axis
:return:

	
class suncasa.utils.DButil.ButtonsPlayCTRL(plot_width=None, *args, **kwargs)

	Produce A play/stop button widget for bokeh plot

	
__slots__ = ['buttons']

	

 suncasa.utils.fit_planet_position

suncasa.utils.fit_planet_position

Module Contents

Functions

	fpoly(x, np)

	

	svdfit(xx, yy, sig, ma)

	

	svd(a)

	Compute the singular value decomposition of array.

	pythag(a, b)

	

	svbksb(uu, ww, vv, bb)

	

	svdvar(vv, ww, ma)

	

	fit_planet_positions(times, ras, decs[, start_time, ...])

	find a fitting polynomial for an ephemeris table.

	
suncasa.utils.fit_planet_position.fpoly(x, np)

	

	
suncasa.utils.fit_planet_position.svdfit(xx, yy, sig, ma)

	

	
suncasa.utils.fit_planet_position.svd(a)

	Compute the singular value decomposition of array.

	
suncasa.utils.fit_planet_position.pythag(a, b)

	

	
suncasa.utils.fit_planet_position.svbksb(uu, ww, vv, bb)

	

	
suncasa.utils.fit_planet_position.svdvar(vv, ww, ma)

	

	
suncasa.utils.fit_planet_position.fit_planet_positions(times, ras, decs, start_time=None, end_time=None, distances=None, allowed_error=0.01)

	find a fitting polynomial for an ephemeris table.

	inputs:
	
	times = list of times at which the ephemeris positions are
	tabulated. assumed sorted in ascending order.
(MJD).

ras = list of right ascensions at those times (radians).
decs = list of declinations at those times (radians).

	Optional inputs:
	start_time = the start time of the SB (MJD).
end_time = the end time of the SB (MJD).
distances = list of distances at those times (AU).
allowed_error = the allowed error in the fitting polynomials

for ra and dec from the tabulated values
(asec).

	returned is a list, first element is the return status:
	0 -> success
1-7 -> Warning: did not converge to required accuracy.

1 -> right ascension only didn’t converge
2 -> declination only didn’t converge
3 -> right ascension and declination didn’t converge
4 -> distance only didn’t converge
5 -> right ascension and distance didn’t converge
6 -> declination and distance didn’t converge
7 -> none of the three converged
(note that in this case the best fitted polynomials
are still returned [N.B. i should return the error
somewhere…].)

	8 -> Error: the time range from start_time to end_time is
	not completely contained in the tabulated times.

	second element is the time t0 to which the polynomial is
	referenced.

third element is the list of right ascension coefficients.
fourth element is the list of declination coefficients.
fifth element is the list of distance coefficients.

bjb
nrao
summer 2012

 suncasa.utils.helio_coordinates

suncasa.utils.helio_coordinates

Module Contents

Functions

	hgs2hcc(rsun, lon, lat, B0, L0)

	

	hcc2hgs(x, y, z, B0, L0)

	

Attributes

	sin

	

	cos

	

	
suncasa.utils.helio_coordinates.sin

	

	
suncasa.utils.helio_coordinates.cos

	

	
suncasa.utils.helio_coordinates.hgs2hcc(rsun, lon, lat, B0, L0)

	

	
suncasa.utils.helio_coordinates.hcc2hgs(x, y, z, B0, L0)

	

 suncasa.utils.helioimage2fits

suncasa.utils.helioimage2fits

Module Contents

Functions

	ms_clearhistory(msfile)

	

	normalize(angle[, lower, upper])

	Function to normalize any angles to between the lower limit and upper limit

	ms_restorehistory(msfile)

	

	read_horizons([t0, dur, vis, observatory, verbose])

	This function visits JPL Horizons to retrieve J2000 topocentric RA and DEC of the solar disk center

	read_msinfo([vis, msinfofile, interp_to_scan, verbose])

	Module ot read CASA measurement set and return RA, DEC, and time stamps of the phase center.

	ephem_to_helio([vis, ephem, msinfo, reftime, ...])

	Module for calculating offsets of the phase center to the solar disk center using the following steps

	getbeam([imagefile, beamfile])

	

	imreg([vis, imagefile, timerange, ephem, msinfo, ...])

	main routine to register CASA images

	calc_phasecenter_from_solxy(vis[, timerange, xycen, ...])

	return the phase center in RA and DEC of a given solar coordinates

Attributes

	py3

	

	tools

	

	tbtool

	

	mstool

	

	qatool

	

	iatool

	

	tb

	

	ms

	

	qa

	

	ia

	

	sunpy1

	

	
suncasa.utils.helioimage2fits.py3

	

	
suncasa.utils.helioimage2fits.tools

	

	
suncasa.utils.helioimage2fits.tbtool

	

	
suncasa.utils.helioimage2fits.mstool

	

	
suncasa.utils.helioimage2fits.qatool

	

	
suncasa.utils.helioimage2fits.iatool

	

	
suncasa.utils.helioimage2fits.tb

	

	
suncasa.utils.helioimage2fits.ms

	

	
suncasa.utils.helioimage2fits.qa

	

	
suncasa.utils.helioimage2fits.ia

	

	
suncasa.utils.helioimage2fits.sunpy1

	

	
suncasa.utils.helioimage2fits.ms_clearhistory(msfile)

	

	
suncasa.utils.helioimage2fits.normalize(angle, lower=-np.pi, upper=np.pi)

	Function to normalize any angles to between the lower limit and upper limit
:param angle: input angle in radians
:param lower: lower bound of the normalization, default to -pi
:param upper: upper bound of the normalization, default to pi
:return: normalized angle in radians

	
suncasa.utils.helioimage2fits.ms_restorehistory(msfile)

	

	
suncasa.utils.helioimage2fits.read_horizons(t0=None, dur=None, vis=None, observatory=None, verbose=False)

	
This function visits JPL Horizons to retrieve J2000 topocentric RA and DEC of the solar disk center
as a function of time.

Keyword arguments:
t0: Referece time in astropy.Time format
dur: duration of the returned coordinates in days. Default to 1 minute
vis: CASA visibility dataset (in measurement set format). If provided, use entire duration from

the visibility data

	observatory: observatory code (from JPL Horizons). If not provided, use information from visibility.
	if no visibility found, use earth center (code=500)

verbose: True to provide extra information

Usage:
>>> from astropy.time import Time
>>> out = read_horizons(t0=Time(‘2017-09-10 16:00:00’), observatory=’-81’)
>>> out = read_horizons(vis = ‘mydata.ms’)

History:
BC (sometime in 2014): function was first wrote, followed by a number of edits by BC and SY
BC (2019-07-16): Added docstring documentation

‘’’

	
suncasa.utils.helioimage2fits.read_msinfo(vis=None, msinfofile=None, interp_to_scan=False, verbose=False)

	Module ot read CASA measurement set and return RA, DEC, and time stamps of the phase center.
Options for returning those from the emphemeris table (if available) or use those from the FIELD table.
:param vis:
:type vis: (required) path to the input CASA measurement set
:param msinfofile:
:type msinfofile: (optional) path/name of the saved numpy .npz file
:param #use_ephem:
:type #use_ephem: (optional) if True (default), use the enclosed emphemeris table, otherwise use RA/DEC of the FIELD table
:param interp_to_scan: are interpolated to the beginning of each scan. This is mainly for backward compatibility. Default is False.
:type interp_to_scan: (optional) if True, the entries of the emphemeris table

	Returns:

	msinfo – vis: CASA measurement set
observatory: Name of the observatory. May be used if they default to phase at the solar center.
scans: summary info of the scans
fieldids: a list of all FIELD ids
scan_start_times: list of the start times of all scans, in mjd
scan_end_times: list of the end times of all scans, in mjd
btimes: time stamps used by ephem_to_helio() to determine the image/phase center shifts, in mjd
ras: corresponding RA coordinates used by ephem_to_helio() to determine the image/phase center shifts, in rad
decs: corresponding DEC coordinates used by ephem_to_helio() to determine the image/phase center shifts, in rad

	Return type:

	A dictionary contains necessary information for ephem_to_helio()

	
suncasa.utils.helioimage2fits.ephem_to_helio(vis=None, ephem=None, msinfo=None, reftime=None, dopolyfit=True, usephacenter=True, geocentric=False, verbose=False)

	Module for calculating offsets of the phase center to the solar disk center using the following steps
1. Take a solar ms database, read the scan and field information, find out the phase centers (in RA and DEC).

This step is done with read_msinfo()

	Compare with the ephemeris of the solar disk center (in RA and DEC)

	Record RA/DEC of the phase center and offsets in RA/DEC and Helioprojective Cartesian coordinates (solar X/Y)
inputs:

msinfo: CASA MS information, output from read_msinfo
ephem: solar ephem, output from read_horizons
reftime: list of reference times (e.g., used for imaging)

CASA standard time format, either a single time (e.g., ‘2012/03/03/12:00:00’
or a time range (e.g., ‘2012/03/03/12:00:00~2012/03/03/13:00:00’. If the latter,
take the midpoint of the timerange for reference. If no date specified, take
the date of the first scan

	dopolyfit: Bool. Default: True. Works for MS database with only one source with continously tracking.
	Disabled if usephacenter=False.

	usephacenter: Bool – if True, correct for the RA and DEC in the ms file based on solar empheris.
	Otherwise assume the phasecenter is pointed to the solar disk center
(EOVSA case)

	geocentric: Bool – if True, use geocentric RA & DEC.
	If False, use topocentric RA & DEC based on observatory location
Default: False

	return values:
	
	helio: a list of VLA pointing information
	reftimestr: reference time, in FITS format string
reftime: reference time, in mjd format
ra: actual RA of phasecenter in the ms file at the reference time (interpolated)
dec: actual DEC of phasecenter in the ms file at the reference time (interpolated)
CASA uses only RA and DEC of the closest field (e.g. in clean)
ra_fld: RA of the CASA reference pointing direction, in radian
dec_fld: DEC of the CASA reference pointing direction, in radian
ra0: RA of the solar disk center, in radian
dec0: DEC of the solar disk center, in radian
raoff: RA offset of the phasecenter in the ms file to solar disk center, in arcsec
decoff: DEC offset of the phasecenter in the ms file to solar disk center, in arcsec
refx: heliocentric X offset of the phasecenter in the ms file to solar disk center, in arcsec
refy: heliocentric Y offset of the phasecenter in the ms file to solar disk center, in arcsec
has_ephem_table: flag to indicate if there is an ephemeris table attached.

	######## Example #########
	from suncasa.utils import helioimage2fits as hf
vis = vis = ‘22B-174_20221031_sun.1s.cal.ms’
ephem = hf.ephem_to_helio(vis=vis, reftime=’2022/10/31/20:37:10~2022/10/31/20:37:20’, dopolyfit=True,

usephacenter=True, verbose=True)

	# Read out the ms information takes some time. To save time, one can read out the ms information first
	and supply the record here for registering multiple images. It will skip the read_msinfo() step.

msinfo = hf.read_msinfo(vis=vis, verbose=True)
ephem = hf.ephem_to_helio(vis=vis, msinfo=msinfo, reftime=’2022/10/31/20:37:10~2022/10/31/20:37:20’,

dopolyfit=True, usephacenter=True, verbose=True)

	
suncasa.utils.helioimage2fits.getbeam(imagefile=None, beamfile=None)

	

	
suncasa.utils.helioimage2fits.imreg(vis=None, imagefile=None, timerange=None, ephem=None, msinfo=None, fitsfile=None, usephacenter=True, geocentric=False, dopolyfit=True, reftime=None, offsetfile=None, beamfile=None, toTb=False, sclfactor=1.0, p_ang=None, overwrite=True, deletehistory=False, subregion='', docompress=False, verbose=False)

	
	main routine to register CASA images
	
	Required Inputs:
	vis: STRING. CASA measurement set from which the image is derived
imagefile: STRING or LIST. name of the input CASA image
timerange: STRING or LIST. timerange used to generate the CASA image, must have the same length as the input images.

Each element should be in CASA standard time format, e.g., ‘2012/03/03/12:00:00~2012/03/03/13:00:00’

	Optional Inputs:
	msinfo: DICTIONARY. CASA MS information, output from read_msinfo. If not provided, generate one from the supplied vis
ephem: DICTIONARY. solar ephem, output from read_horizons.

If not provided, query JPL Horizons based on time info of the vis (internet connection required)

fitsfile: STRING or LIST. name of the output registered fits files
toTb: Bool. Convert the default Jy/beam to brightness temperature?
sclfactor: scale the image values up by its value (e.g., sclfactor = 100 to compensate VLA 20 dB attenuator)
p_ang: solar p angle in degrees. If provided, use the supplied value and ignore the empheris
verbose: Bool. Show more diagnostic info if True.
usephacenter: Bool – if True, correct for the RA and DEC in the ms file based on solar empheris.

Otherwise assume the phasecenter is correctly pointed to the solar disk center
(EOVSA case)

	geocentric: Bool – if True, use geocentric RA & DEC.
	If False, use topocentric RA & DEC based on observatory location
Default: False

	dopolyfit: Bool – if True, fit the ephemeris from the measurement set using a polynomial fit.
	if False, just use linear interpolation

The following two parameters are only meant for temporary fixes
reftime: STRING or LIST. ONLY USED IF ANOTHER TIME (OTHER THAN TIME TO MAKE THE IMAGE)

IS NEEDED TO FIND RA AND DEC.
Each element should be in CASA standard time format, e.g., ‘2012/03/03/12:00:00’

subregion: only write the data within the sub-region selection. See ‘help par.region’ for details.

Usage:
>>> from suncasa.utils import helioimage2fits as hf
>>> hf.imreg(vis=’mydata.ms’, imagefile=’myimage.image’, fitsfile=’myimage.fits’,

timerange=’2017/08/21/20:21:10~2017/08/21/20:21:18’)

The output fits file is ‘myimage.fits’

History:
BC (sometime in 2014): function was first wrote, followed by a number of edits by BC and SY
BC (2019-07-16): Added checks for stokes parameter. Verified that for converting from Jy/beam to brightness temperature,

the convention of 2*k_b*T should always be used. I.e., for unpolarized source, stokes I, RR, LL, XX, YY,
etc. in the output CASA images from (t)clean should all have same values of radio intensity
(in Jy/beam) and brightness temperature (in K).

	
suncasa.utils.helioimage2fits.calc_phasecenter_from_solxy(vis, timerange='', xycen=None, usemsphacenter=True, observatory=None)

	return the phase center in RA and DEC of a given solar coordinates

	Parameters:

	
	vis – input measurement sets file

	timerange – can be a string or astropy.time.core.Time object, or a 2-element list of string or Time object

	xycen – solar x-pos and y-pos in arcsec

	usemsphacenter –

	Returns:

	

phasecenter
midtim: mid time of the given timerange

 suncasa.utils.idlsav2sunmap

suncasa.utils.idlsav2sunmap

Module Contents

Functions

	idlsav2sunmap(idlsavfile)

	

	
suncasa.utils.idlsav2sunmap.idlsav2sunmap(idlsavfile)

	

 suncasa.utils.jdutil

suncasa.utils.jdutil

Functions for converting dates to/from JD and MJD. Assumes dates are historical
dates, including the transition from the Julian calendar to the Gregorian
calendar in 1582. No support for proleptic Gregorian/Julian calendars.

	Author:

	Matt Davis

	Website:

	http://github.com/jiffyclub

Module Contents

Classes

	datetime

	A subclass of datetime.datetime that performs math operations by first

Functions

	mjd_to_jd(mjd)

	Convert Modified Julian Day to Julian Day.

	jd_to_mjd(jd)

	Convert Julian Day to Modified Julian Day

	date_to_jd(year, month, day)

	Convert a date to Julian Day.

	jd_to_date(jd)

	Convert Julian Day to date.

	hmsm_to_days([hour, min, sec, micro])

	Convert hours, minutes, seconds, and microseconds to fractional days.

	days_to_hmsm(days)

	Convert fractional days to hours, minutes, seconds, and microseconds.

	datetime_to_jd(date)

	Convert a datetime.datetime object to Julian Day.

	jd_to_datetime(jd)

	Convert a Julian Day to an jdutil.datetime object.

	timedelta_to_days(td)

	Convert a datetime.timedelta object to a total number of days.

	
suncasa.utils.jdutil.mjd_to_jd(mjd)

	Convert Modified Julian Day to Julian Day.

	Parameters:

	mjd (float) – Modified Julian Day

	Returns:

	jd – Julian Day

	Return type:

	float

	
suncasa.utils.jdutil.jd_to_mjd(jd)

	Convert Julian Day to Modified Julian Day

	Parameters:

	jd (float) – Julian Day

	Returns:

	mjd – Modified Julian Day

	Return type:

	float

	
suncasa.utils.jdutil.date_to_jd(year, month, day)

	Convert a date to Julian Day.

	Algorithm from ‘Practical Astronomy with your Calculator or Spreadsheet’,
	4th ed., Duffet-Smith and Zwart, 2011.

	Parameters:

	
	year (int) – Year as integer. Years preceding 1 A.D. should be 0 or negative.
The year before 1 A.D. is 0, 10 B.C. is year -9.

	month (int) – Month as integer, Jan = 1, Feb. = 2, etc.

	day (float) – Day, may contain fractional part.

	Returns:

	jd – Julian Day

	Return type:

	float

Examples

Convert 6 a.m., February 17, 1985 to Julian Day

>>> date_to_jd(1985,2,17.25)
2446113.75

	
suncasa.utils.jdutil.jd_to_date(jd)

	Convert Julian Day to date.

	Algorithm from ‘Practical Astronomy with your Calculator or Spreadsheet’,
	4th ed., Duffet-Smith and Zwart, 2011.

	Parameters:

	jd (float) – Julian Day

	Returns:

	
	year (int) – Year as integer. Years preceding 1 A.D. should be 0 or negative.
The year before 1 A.D. is 0, 10 B.C. is year -9.

	month (int) – Month as integer, Jan = 1, Feb. = 2, etc.

	day (float) – Day, may contain fractional part.

Examples

Convert Julian Day 2446113.75 to year, month, and day.

>>> jd_to_date(2446113.75)
(1985, 2, 17.25)

	
suncasa.utils.jdutil.hmsm_to_days(hour=0, min=0, sec=0, micro=0)

	Convert hours, minutes, seconds, and microseconds to fractional days.

	Parameters:

	
	hour (int, optional) – Hour number. Defaults to 0.

	min (int, optional) – Minute number. Defaults to 0.

	sec (int, optional) – Second number. Defaults to 0.

	micro (int, optional) – Microsecond number. Defaults to 0.

	Returns:

	days – Fractional days.

	Return type:

	float

Examples

>>> hmsm_to_days(hour=6)
0.25

	
suncasa.utils.jdutil.days_to_hmsm(days)

	Convert fractional days to hours, minutes, seconds, and microseconds.
Precision beyond microseconds is rounded to the nearest microsecond.

	Parameters:

	days (float) – A fractional number of days. Must be less than 1.

	Returns:

	
	hour (int) – Hour number.

	min (int) – Minute number.

	sec (int) – Second number.

	micro (int) – Microsecond number.

	Raises:

	ValueError – If days is >= 1.

Examples

>>> days_to_hmsm(0.1)
(2, 24, 0, 0)

	
suncasa.utils.jdutil.datetime_to_jd(date)

	Convert a datetime.datetime object to Julian Day.

	Parameters:

	date (datetime.datetime instance) –

	Returns:

	jd – Julian day.

	Return type:

	float

Examples

>>> d = datetime.datetime(1985,2,17,6)
>>> d
datetime.datetime(1985, 2, 17, 6, 0)
>>> jdutil.datetime_to_jd(d)
2446113.75

	
suncasa.utils.jdutil.jd_to_datetime(jd)

	Convert a Julian Day to an jdutil.datetime object.

	Parameters:

	jd (float) – Julian day.

	Returns:

	dt – jdutil.datetime equivalent of Julian day.

	Return type:

	jdutil.datetime object

Examples

>>> jd_to_datetime(2446113.75)
datetime(1985, 2, 17, 6, 0)

	
suncasa.utils.jdutil.timedelta_to_days(td)

	Convert a datetime.timedelta object to a total number of days.

	Parameters:

	td (datetime.timedelta instance) –

	Returns:

	days – Total number of days in the datetime.timedelta object.

	Return type:

	float

Examples

>>> td = datetime.timedelta(4.5)
>>> td
datetime.timedelta(4, 43200)
>>> timedelta_to_days(td)
4.5

	
class suncasa.utils.jdutil.datetime

	Bases: datetime.datetime

A subclass of datetime.datetime that performs math operations by first
converting to Julian Day, then back to a jdutil.datetime object.

Addition works with datetime.timedelta objects, subtraction works with
datetime.timedelta, datetime.datetime, and jdutil.datetime objects.
Not all combinations work in all directions, e.g.
timedelta - datetime is meaningless.

See also

	datetime.datetime
	Parent class.

	
__add__(other)

	Add a datetime and a timedelta.

	
__radd__(other)

	

	
__sub__(other)

	Subtract two datetimes, or a datetime and a timedelta.

	
__rsub__(other)

	

	
to_jd()

	Return the date converted to Julian Day.

	
to_mjd()

	Return the date converted to Modified Julian Day.

 suncasa.utils.lightcurves

suncasa.utils.lightcurves

Module Contents

Functions

	lightcurves(timerange[, outdir, specfile, goes, ...])

	

	
suncasa.utils.lightcurves.lightcurves(timerange, outdir='./', specfile=None, goes=True, hessifile=None, fermifile=None, ylog=False, hessi_smoth=0, dspec_cmap='cubehelix', vmax=None, vmin=None)

	

 suncasa.utils.lineticks

suncasa.utils.lineticks

Module Contents

Classes

	LineTicks

	

Functions

	get_perp_vec(u1, u2[, direction])

	Return the unit vector perpendicular to the vector u2-u1.

	get_av_vec(u1, u2)

	Return the average unit vector between u1 and u2.

	
suncasa.utils.lineticks.get_perp_vec(u1, u2, direction=1)

	Return the unit vector perpendicular to the vector u2-u1.

	
suncasa.utils.lineticks.get_av_vec(u1, u2)

	Return the average unit vector between u1 and u2.

	
class suncasa.utils.lineticks.LineTicks(line, idx, tick_length, tick_shift=3.0, direction=1, label=None, label_color='k', fontsize='xx-small', **kwargs)

	
	
add_ticks(ax)

	

	
on_change_lims(ax)

	

	
on_resize(event)

	

 suncasa.utils.mod_slftbs

suncasa.utils.mod_slftbs

Module Contents

Functions

	cpxx2yy([tb_in])

	

	concat([tb_in, tb_out])

	

Attributes

	tools

	

	tbtool

	

	tb

	

	
suncasa.utils.mod_slftbs.tools

	

	
suncasa.utils.mod_slftbs.tbtool

	

	
suncasa.utils.mod_slftbs.tb

	

	
suncasa.utils.mod_slftbs.cpxx2yy(tb_in=[])

	

	
suncasa.utils.mod_slftbs.concat(tb_in=[], tb_out=None)

	

 suncasa.utils.mstools

suncasa.utils.mstools

Module Contents

Functions

	get_bandinfo(msfile[, spw, returnbdinfo])

	get center frequencies of all spectral windows for msfile

	get_bmsize(cfreq[, refbmsize, reffreq, minbmsize])

	get beamsize at frequencies definded by cfreq based on refbmsize at reffreq

	get_trange(msfile)

	

	time2filename(msfile[, timerange, spw, desc])

	

	msclearhistory(msfile)

	Clears history in the a measurement sets file

	clearflagrow(msfile[, mode])

	
	param msfile:

	

	splitX(vis[, datacolumn2])

	

	flagcaltboutliers(caltable[, limit])

	

	modeltransfer(msfile[, spw, reference, transfer])

	

	concat_slftb([tb_in, tb_out])

	

	gaincalXY([vis, caltable, pols, msfileXY, gaintableXY])

	

	getmodel(vis[, spw])

	

	putmodel(vis[, spw, model])

	

Attributes

	tasks

	

	split

	

	tclean

	

	casalog

	

	clearcal

	

	gaincal

	

	tools

	

	tbtool

	

	mstool

	

	qatool

	

	tb

	

	ms

	

	qa

	

	
suncasa.utils.mstools.tasks

	

	
suncasa.utils.mstools.split

	

	
suncasa.utils.mstools.tclean

	

	
suncasa.utils.mstools.casalog

	

	
suncasa.utils.mstools.clearcal

	

	
suncasa.utils.mstools.gaincal

	

	
suncasa.utils.mstools.tools

	

	
suncasa.utils.mstools.tbtool

	

	
suncasa.utils.mstools.mstool

	

	
suncasa.utils.mstools.qatool

	

	
suncasa.utils.mstools.tb

	

	
suncasa.utils.mstools.ms

	

	
suncasa.utils.mstools.qa

	

	
suncasa.utils.mstools.get_bandinfo(msfile, spw=None, returnbdinfo=False)

	get center frequencies of all spectral windows for msfile
spw: [option] return the cfreq of spw. spw can be a a string or a list of string.
The syntax of spw follows the standard spw Parameter in CASA
if spw is not provided, return the cfreq of all spws in the msfile.
return cfreqs is in GHz
if returnbounds is True, return a dictionary including comprehensive freq information of the ms.

	
suncasa.utils.mstools.get_bmsize(cfreq, refbmsize=70.0, reffreq=1.0, minbmsize=4.0)

	get beamsize at frequencies definded by cfreq based on refbmsize at reffreq
cfreq: input frequencies at GHz
refbmsize: reference beam size in arcsec
reffreq: reference frequency in GHz
minbmsize: minimum beam size in arcsec

	
suncasa.utils.mstools.get_trange(msfile)

	

	
suncasa.utils.mstools.time2filename(msfile, timerange='', spw='', desc=False)

	

	
suncasa.utils.mstools.msclearhistory(msfile)

	Clears history in the a measurement sets file

	Parameters:

	msfile – string
The name of a measurement sets file

	Returns:

	

	
suncasa.utils.mstools.clearflagrow(msfile, mode='clear')

	
	Parameters:

	
	msfile –

	mode – FLAG_ROW operation

	default: ‘clear’: (default) clear the FLAG_ROW
	‘list’: to list existing FLAG_ROW

	Returns:

	

	
suncasa.utils.mstools.splitX(vis, datacolumn2='MODEL_DATA', **kwargs)

	

	
suncasa.utils.mstools.flagcaltboutliers(caltable, limit=[])

	

	
suncasa.utils.mstools.modeltransfer(msfile, spw='', reference='XX', transfer='YY')

	

	
suncasa.utils.mstools.concat_slftb(tb_in=[], tb_out=None)

	

	
suncasa.utils.mstools.gaincalXY(vis=None, caltable=None, pols='XXYY', msfileXY=None, gaintableXY=None, **kwargs)

	

	
suncasa.utils.mstools.getmodel(vis, spw=None)

	

	
suncasa.utils.mstools.putmodel(vis, spw=None, model=None)

	

 suncasa.utils.plot_map

suncasa.utils.plot_map

Module Contents

Functions

	map2wcsgrids(sunpymap[, cell, antialiased])

	
	param sunpymap:

	

	get_map_extent(sunpymap[, rot])

	

	imshow(sunpymap[, axes, rot])

	
	param sunpymap:

	

	contour(sunpymap[, axes, rot])

	

	contourf(sunpymap[, axes, rot, mapx, mapy, rangereverse])

	

	imshow_RGB(maps[, axes, returndataonly])

	

	
suncasa.utils.plot_map.map2wcsgrids(sunpymap, cell=False, antialiased=True)

	
	Parameters:

	
	sunpymap –

	cell – if True, return the coordinates of the pixel centers. if False, return the coordinates of the pixel boundaries

	Returns:

	

	
suncasa.utils.plot_map.get_map_extent(sunpymap, rot=0)

	

	
suncasa.utils.plot_map.imshow(sunpymap, axes=None, rot=0, **kwargs)

	
	Parameters:

	
	sunpymap –

	axes –

	rot – rotation angle in degrees counter-clockwise. Must be an integer multiple of 90.

	kwargs –

	Returns:

	

	
suncasa.utils.plot_map.contour(sunpymap, axes=None, rot=0, **kwargs)

	

	
suncasa.utils.plot_map.contourf(sunpymap, axes=None, rot=0, mapx=None, mapy=None, rangereverse=False, **kwargs)

	

	
suncasa.utils.plot_map.imshow_RGB(maps, axes=None, returndataonly=False)

	

 suncasa.utils.plot_mapX

suncasa.utils.plot_mapX

Module Contents

Classes

	Sunmap

	

	
class suncasa.utils.plot_mapX.Sunmap(sunmap, aia=False)

	
	
map2wcsgrids(sunpymap=None, cell=False)

	
	Parameters:

	
	sunpymap –

	cell – if True, return the coordinates of the pixel centers. if False, return the coordinates of the pixel boundaries

	Returns:

	

	
get_map_extent(sunpymap=None, rot=0, rangereverse=False)

	

	
imshow(axes=None, rot=0, rangereverse=False, maskon=False, image_enhance=False, **kwargs)

	
	Parameters:

	
	sunpymap –

	axes –

	rot – rotation angle in degrees counter-clockwise. Must be an integer multiple of 90.

	kwargs –

	Returns:

	

	
contour(axes=None, rot=0, mapx=None, mapy=None, rangereverse=False, **kwargs)

	

	
contourf(axes=None, rot=0, mapx=None, mapy=None, rangereverse=False, **kwargs)

	

	
draw_limb(axes=None, rangereverse=False, **kwargs)

	

	
draw_grid(axes=None, rot=0, grid_spacing=None, **kwargs)

	

	
draw_rectangle(bottom_left, width, height, axes=None, **kwargs)

	

	
imshow_RGB(maps, axes=None, returndataonly=False, rangereverse=False)

	

 suncasa.utils.pltutils

suncasa.utils.pltutils

Module Contents

Functions

	multicolor_text(axes, x, y, textin[, cmap, wratio, bbox])

	

	align_marker(marker[, halign, valign])

	

	
suncasa.utils.pltutils.multicolor_text(axes, x, y, textin, cmap=None, wratio=0.5, bbox={}, **kw)

	

	
suncasa.utils.pltutils.align_marker(marker, halign='center', valign='middle')

	

 suncasa.utils.qlookplot

suncasa.utils.qlookplot

Module Contents

Functions

	validate_and_reset_restoringbeam(restoringbm)

	Validates the format of the restoringbeam string. If the format is incorrect,

	read_imres(imresfile)

	

	checkspecnan(spec)

	

	get_goes_data([t, sat_num])

	Reads GOES data from https://umbra.nascom.nasa.gov/ repository, for date

	ms_clearhistory(msfile)

	

	ms_restorehistory(msfile)

	

	get_mapcube_time(mapcube)

	

	uniq(lst)

	

	get_colorbar_params(fbounds[, stepfactor])

	

	download_jp2(tstart, tend, wavelengths, outdir)

	

	downloadAIAdata(trange[, wavelength, cadence, outdir])

	

	trange2aiafits(trange, aiawave, aiadir)

	

	parse_rdata(rdata, meta[, icmap, stokes, sp, ...])

	rdata, meta: (required) data and header of a fits file readed using ndfits.read

	mk_qlook_image(vis[, ncpu, timerange, twidth, stokes, ...])

	

	plt_qlook_image(imres[, timerange, spwplt, figdir, ...])

	Required inputs:

	dspec_external(vis[, workdir, specfile, ds_normalised])

	

	qlookplot(vis[, timerange, spw, spwplt, workdir, ...])

	Generate quick-look plots and dynamic spectra for solar radio observations.

Attributes

	systemname

	

	sunpy1

	

	sunpy3

	

	py3

	

	tasks

	

	split

	

	tclean

	

	casalog

	

	tools

	

	tbtool

	

	mstool

	

	qatool

	

	tb

	

	ms

	

	qa

	

	c_external

	

	sunpy1

	

	polmap

	

	aiadir_default

	

	
suncasa.utils.qlookplot.systemname

	

	
suncasa.utils.qlookplot.sunpy1

	

	
suncasa.utils.qlookplot.sunpy3

	

	
suncasa.utils.qlookplot.py3

	

	
suncasa.utils.qlookplot.tasks

	

	
suncasa.utils.qlookplot.split

	

	
suncasa.utils.qlookplot.tclean

	

	
suncasa.utils.qlookplot.casalog

	

	
suncasa.utils.qlookplot.tools

	

	
suncasa.utils.qlookplot.tbtool

	

	
suncasa.utils.qlookplot.mstool

	

	
suncasa.utils.qlookplot.qatool

	

	
suncasa.utils.qlookplot.tb

	

	
suncasa.utils.qlookplot.ms

	

	
suncasa.utils.qlookplot.qa

	

	
suncasa.utils.qlookplot.c_external = False

	

	
suncasa.utils.qlookplot.sunpy1

	

	
suncasa.utils.qlookplot.polmap

	

	
suncasa.utils.qlookplot.validate_and_reset_restoringbeam(restoringbm)

	Validates the format of the restoringbeam string. If the format is incorrect,
it prints an error message and resets the value to an empty string.

Parameters:
- restoringbeam (str): The restoring beam size to validate.

Returns:
- str: The original restoringbeam if valid, or an empty string if invalid.

	
suncasa.utils.qlookplot.read_imres(imresfile)

	

	
suncasa.utils.qlookplot.checkspecnan(spec)

	

	
suncasa.utils.qlookplot.get_goes_data(t=None, sat_num=None)

	Reads GOES data from https://umbra.nascom.nasa.gov/ repository, for date
and satellite number provided. If sat_num is None, data for all available
satellites are downloaded, with some sanity check used to decide the best.
If the Time() object t is None, data for the day before the current date
are read (since there is a delay of 1 day in availability of the data).
:returns: goes_t GOES time array in plot_date format

goes_data GOES 1-8 A lightcurve

	
suncasa.utils.qlookplot.ms_clearhistory(msfile)

	

	
suncasa.utils.qlookplot.ms_restorehistory(msfile)

	

	
suncasa.utils.qlookplot.aiadir_default = '/srg/data/sdo/aia/level1/'

	

	
suncasa.utils.qlookplot.get_mapcube_time(mapcube)

	

	
suncasa.utils.qlookplot.uniq(lst)

	

	
suncasa.utils.qlookplot.get_colorbar_params(fbounds, stepfactor=1)

	

	
suncasa.utils.qlookplot.download_jp2(tstart, tend, wavelengths, outdir)

	

	
suncasa.utils.qlookplot.downloadAIAdata(trange, wavelength=None, cadence=None, outdir='./')

	

	
suncasa.utils.qlookplot.trange2aiafits(trange, aiawave, aiadir)

	

	
suncasa.utils.qlookplot.parse_rdata(rdata, meta, icmap=None, stokes='I,V', sp=None, show_warnings=False)

	rdata, meta: (required) data and header of a fits file readed using ndfits.read
icmap: (optional) colormap for plotting radio images
stokes: (optional) polarizations to visualizing
sp: (optional) the spectral window to plot, if there are multiple spectral windows in the fits file
:returns: * cmaps (A dictionary contains colormaps for the selected polarizations)

	datas (A dictionary contains image data for the selected polarizations)

	
suncasa.utils.qlookplot.mk_qlook_image(vis, ncpu=1, timerange='', twidth=12, stokes='I,V', antenna='', imagedir=None, spws=[], toTb=True, sclfactor=1.0, overwrite=True, doslfcal=False, datacolumn='data', phasecenter='', robust=0.0, niter=500, gain=0.1, imsize=[512], cell=['5.0arcsec'], pbcor=True, reftime='', restoringbeam=[''], refbmsize=70.0, reffreq=1.0, minbmsize=4.0, mask='', docompress=False, wrapfits=True, uvrange='', subregion='', c_external=True, show_warnings=False)

	

	
suncasa.utils.qlookplot.plt_qlook_image(imres, timerange='', spwplt=None, figdir=None, specdata=None, verbose=True, stokes='I,V', fov=None, imax=None, imin=None, icmap=None, inorm=None, amax=None, amin=None, acmap=None, anorm=None, nclevels=None, dmax=None, dmin=None, dcmap=None, dnorm=None, sclfactor=1.0, clevels=None, aiafits='', aiadir=None, aiawave=171, plotaia=True, freqbounds=None, moviename='', alpha_cont=1.0, custom_mapcubes=[], opencontour=False, movieformat='html', ds_normalised=False)

	Required inputs:
Important optional inputs:
Optional inputs:

aiadir: directory to search aia fits files

Example:
:param imres:
:param timerange:
:param figdir:
:param specdata:
:param verbose:
:param stokes:
:param fov:
:param imax: ## radio image plot setting
:param imin:
:param icmap:
:param inorm:
:param amax: ## aia plot setting
:param amin:
:param acmap:
:param anorm:
:param nclevels:
:param dmax: ## dynamic spectra plot setting
:param dmin:
:param dcmap:
:param dnorm:
:param sclfactor:
:param clevels:
:param aiafits:
:param aiadir:
:param aiawave:
:param plotaia:
:param moviename:
:param alpha_cont:
:param custom_mapcubes:
:return:

	
suncasa.utils.qlookplot.dspec_external(vis, workdir='./', specfile=None, ds_normalised=False)

	

	
suncasa.utils.qlookplot.qlookplot(vis, timerange=None, spw='', spwplt=None, workdir='./', specfile=None, xycen=None, fov=[500.0, 500.0], xyrange=None, restoringbeam=[''], refbmsize=70.0, reffreq=1.0, minbmsize=4.0, antenna='', uvrange='', stokes='RR,LL', robust=0.0, weighting='briggs', niter=500, imsize=[512], cell=['5.0arcsec'], mask='', gain=0.1, pbcor=True, interactive=False, datacolumn='data', reftime='', toTb=True, sclfactor=1.0, subregion='', usemsphacenter=True, imagefile=None, outfits='', docompress=True, wrapfits=True, nclevels=3, clevels=None, calpha=0.5, opencontour=False, imax=None, imin=None, icmap=None, inorm=None, dmin=None, dmax=None, dcmap=None, dnorm=None, plotaia=True, aiawave=171, aiafits=None, aiadir=None, amax=None, amin=None, acmap=None, anorm=None, goestime=None, mkmovie=False, ncpu=1, twidth=1, movieformat='html', cleartmpfits=True, overwrite=True, clearmshistory=False, show_warnings=False, verbose=False, quiet=False, ds_normalised=False)

	Generate quick-look plots and dynamic spectra for solar radio observations.
Required inputs:

	param vis:

	Path to the calibrated CASA measurement set.

	Important optional inputs:
	timerange: Timerange for analysis in standard CASA format. Defaults to entire range, which can be slow.
spw: spectral window (SPW) selection following the CASA syntax.

Examples: spw=’1:2~60’ (spw id 1, channel range 2-60); spw=’*:1.2~1.3GHz’ (selects all channels within 1.2-1.3 GHz; note the *)
spw can be a list of spectral windows, i.e, [‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’]

spwplt: Subset of SPW to display, defaults to all specified in spw.
workdir: Working directory for temporary files, defaults to current directory.
specfile: Path to a saved dynamic spectrum file (from suncasa.dspec.dspec.Dspec())

6or generate a median dynamic spectrum on the fly if not provided.

	Optional inputs:
	goestime: goes plot time, example [‘2016/02/18 18:00:00’,’2016/02/18 23:00:00’]
xycen: center of the image in helioprojective coordinates (HPLN/HPLT), in arcseconds. Example: [900, -150.]
fov: field of view in arcsecs. Example: [500., 500.]
xyrange: field of view in solar XY coordinates. Format: [[x1,x2],[y1,y2]]. Example: [[900., 1200.],[0,300]]

NOTE: THIS PARAMETER OVERWRITES XYCEN AND FOV

	Restoring Beam Parameters:
	
	restoringbeam: A list specifying the sizes of the restoring beam explicitly in arc seconds (e.g., [‘100arcsec’, ‘80arcsec’, ‘50arcsec’, …]).
	Must match the number of SPWs if not [‘’]. If specified, these values override automatic beam size calculations for each SPW.

	refbmsize: The reference beam size in arc seconds. This parameter is used in conjunction with reffreq to calculate the beam size for all SPWs,
	assuming the beam size is inversely proportional to the frequency.
The parameters refbmsize,`reffreq` and minbmsize are only used if restoringbeam is set to [‘’].

reffreq: The reference frequency in GHz, used together with refbmsize to calculate the beam sizes for SPWs.

minbmsize: Minimum beam size in arcseconds, overrides smaller calculated sizes.

	CASA tclean parameters: refer to CASA tclean documentation for more details.
	antenna: baseline to generate dynamic spectrum
uvrange: uvrange to select baselines for generating dynamic spectrum
stokes: polarization of the clean image, can be ‘RR,LL’ or ‘I,V’
robust:
weighting:
niter:
imsize:
cell:
mask: only accept CASA region format (https://casaguides.nrao.edu/index.php/CASA_Region_Format)
gain:
pbcor:
interactive:
datacolumn:

	image registration parameters:
	reftime: Reference time for image alignment.
toTb: Bool. Convert the default Jy/beam to brightness temperature?
sclfactor: scale the image values by its value (e.g., sclfactor = 100 to compensate VLA 20 dB attenuator)
subregion: only write the data within the sub-region selection. See ‘help par.region’ for details.
usephacenter: Bool – if True, correct for the RA and DEC in the ms file based on solar empheris.

Otherwise assume the phasecenter is correctly pointed to the solar disk center
(EOVSA case)

imagefile: Use specified CASA radio image file for registration; otherwise, generate anew.
outfits: Use specified FITS file of a radio image for output; otherwise, generate anew.
docompress: if compress the outfits
wrapfits: if wrap the fits files of multiple spectral windows at one given time interval into a combined fits file.
overwrite: if overwrite the existed outfits file (default: True).

	radio image plotting parameters:
	nclevels: Number of contour levels for radio image plots.
clevels: Specific contour levels for radio image plots.
opencontour: Boolean. Plots open contours if True; filled contours otherwise.
icmap: Color map (string or Colormap object) for radio images/contours.
imax, imin: Color scale range, defining normalization before color mapping.
inorm: Normalization method (string or Normalize object), overriding imax and imin.

	radio dynamic spectrum plotting parameters:
	dcmap: Color map (string or Colormap object) for the dynamic spectrum.
dmin, dmax: Color scale range for dynamic spectrum normalization before color mapping.
dnorm: Normalization method (string or Normalize object), overriding dmax and dmin.

	SDO/AIA image plotting parameters:
	plotaia: Boolean. Downloads and plots AIA image at specified aiawave if True.
aiawave: AIA image passband to download and display.
aiafits: Directly plots AIA image from provided FITS file, skipping download. (note: users can provide any solar image FITS file for plotting).
aiadir: Searches this directory for AIA image files to skip download.
acmap: Color map (string or Colormap object) for AIA images.
amin, amax: Color scale range for AIA image normalization before color mapping.
anorm: Normalization method (string or Normalize object), overriding amax and amin.

	movie parameters:
	mkmovie: Boolean. Generates a movie from radio images over multiple time intervals if True.
ncpu: Number of CPUs for parallel clean operations with ptclean.
twidth: Time pixel averaging width (default: 1).
movieformat: Output movie format, either ‘html’ or ‘mp4’.

 suncasa.utils.radio_data_fetch

suncasa.utils.radio_data_fetch

Module Contents

Functions

	get_rstn_data(time[, outdir, ylim])

	

	
suncasa.utils.radio_data_fetch.get_rstn_data(time, outdir='./RSTN/', ylim=[0, 800])

	

 suncasa.utils.signal_utils

suncasa.utils.signal_utils

Module Contents

Functions

	normalize(y[, ymax, ymin, center, yerr, symgamma])

	
	param y:

	

	smooth(x[, window_len, window, mode])

	smooth the data using a window with requested size.

	butter_lowpass(cutoff, fs[, order])

	

	butter_lowpass_filter(data, cutoff, fs[, order])

	

	lowps_filter(data, cutoff, fs, ix)

	

	low_pass_filter(t, data[, fs, cutoff, order, showplot])

	

	bandpass_filter(t, data[, fs, cutoff, order, showplot])

	

	c_correlateX(a, v[, returnx, returnav, s, xran, ...])

	
	param a:

	

	get_xcorr_info(xcorr[, cwidth_guess, showplt, verbose])

	calculate the error in time lag using equation (3) in Gaskell & Peterson 1987

	plot_wavelet(t, dat, dt, pl, pr[, period_pltlim, ax, ...])

	

	
suncasa.utils.signal_utils.normalize(y, ymax=None, ymin=None, center=None, yerr=None, symgamma=None)

	
	Parameters:

	
	y –

	ymax –

	ymin –

	center – option —- None, zero, 0, mean

	symgamma –

	Returns:

	

	
suncasa.utils.signal_utils.smooth(x, window_len=11, window='hanning', mode='same')

	smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.

	input:
	x: the input signal
window_len: the dimension of the smoothing window; should be an odd integer
window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’

flat window will produce a moving average smoothing.

	output:
	the smoothed signal

example:

t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter

TODO: the window parameter could be the window itself if an array instead of a string
NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.

	
suncasa.utils.signal_utils.butter_lowpass(cutoff, fs, order=5)

	

	
suncasa.utils.signal_utils.butter_lowpass_filter(data, cutoff, fs, order=5)

	

	
suncasa.utils.signal_utils.lowps_filter(data, cutoff, fs, ix)

	

	
suncasa.utils.signal_utils.low_pass_filter(t, data, fs=1.0 / 4, cutoff=1.0 / 60, order=6, showplot=False)

	

	
suncasa.utils.signal_utils.bandpass_filter(t, data, fs=1.0 / 4, cutoff=1.0 / 60, order=6, showplot=False)

	

	
suncasa.utils.signal_utils.c_correlateX(a, v, returnx=False, returnav=False, s=0, xran=None, coarse=False, interp='spl')

	
	Parameters:

	
	a –

	v – a and v can be a dict in following format {‘x’:[],’y’:[]}. The length of a and v can be different.

	returnx –

	Returns:

	

	
suncasa.utils.signal_utils.get_xcorr_info(xcorr, cwidth_guess=2.5 / 24 / 60, showplt=False, verbose=False)

	calculate the error in time lag using equation (3) in Gaskell & Peterson 1987
:param xcorr:
:param cwidth_guess:
:return:

	
suncasa.utils.signal_utils.plot_wavelet(t, dat, dt, pl, pr, period_pltlim=None, ax=None, ax2=None, stscale=2, siglev=0.95, cmap='viridis', title='', levels=None, label='', units='', tunits='', sav_img=False)

	

 suncasa.utils.signalsmooth

suncasa.utils.signalsmooth

cookb_signalsmooth.py

from: http://scipy.org/Cookbook/SignalSmooth

Module Contents

Functions

	smooth(x[, window_len, window])

	smooth the data using a window with requested size.

	gauss_kern(size[, sizey])

	Returns a normalized 2D gauss kernel array for convolutions

	blur_image(im, n[, ny])

	blurs the image by convolving with a gaussian kernel of typical

	smooth_demo()

	

Attributes

	Z

	

	
suncasa.utils.signalsmooth.smooth(x, window_len=10, window='hanning')

	smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.

	input:
	x: the input signal
window_len: the dimension of the smoothing window
window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’

flat window will produce a moving average smoothing.

	output:
	the smoothed signal

example:

import numpy as np
t = np.linspace(-2,2,0.1)
x = np.sin(t)+np.random.randn(len(t))*0.1
y = smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter

NOTE from B. Chen: slightly modified the reflected copies: window_len-1 points are added to both ends.
Previous one is not exactly the reflection, the indices are off by one pixel

	
suncasa.utils.signalsmooth.gauss_kern(size, sizey=None)

	Returns a normalized 2D gauss kernel array for convolutions

	
suncasa.utils.signalsmooth.blur_image(im, n, ny=None)

	blurs the image by convolving with a gaussian kernel of typical
size n. The optional keyword argument ny allows for a different
size in the y direction.

	
suncasa.utils.signalsmooth.smooth_demo()

	

	
suncasa.utils.signalsmooth.Z

	

 suncasa.utils.stackplot

suncasa.utils.stackplot

Module Contents

Classes

	LightCurveBuilder

	

	SpaceTimeSlitBuilder

	

	CutslitBuilder

	

	Stackplot

	

Functions

	resettable(f)

	

	b_filter(data, lowcut, highcut, fs, ix)

	

	runningmean(data, window, ix)

	

	c_correlate(a, v[, returnx])

	

	XCorrMap(data[, refpix])

	

	XCorrStackplt(z, x, y[, doxscale])

	get the cross correlation map along y axis

	FitSlit(xx, yy, cutwidth, cutang, cutlength[, s, ...])

	

	MakeSlit(pointDF)

	

	getimprofile(data, cutslit[, xrange, yrange, get_peak])

	

	smooth(x[, window_len, window])

	smooth the data using a window with requested size.

	grid(x, y, z[, resX, resY])

	Convert 3 column data to matplotlib grid

	polyfit(x, y, length, deg)

	

	
suncasa.utils.stackplot.resettable(f)

	

	
suncasa.utils.stackplot.b_filter(data, lowcut, highcut, fs, ix)

	

	
suncasa.utils.stackplot.runningmean(data, window, ix)

	

	
suncasa.utils.stackplot.c_correlate(a, v, returnx=False)

	

	
suncasa.utils.stackplot.XCorrMap(data, refpix=[0, 0])

	

	
suncasa.utils.stackplot.XCorrStackplt(z, x, y, doxscale=True)

	get the cross correlation map along y axis
:param z: data
:param x: x axis
:param y: y axis
:return:

	
suncasa.utils.stackplot.FitSlit(xx, yy, cutwidth, cutang, cutlength, s=None, method='Polyfit', ascending=True)

	

	
suncasa.utils.stackplot.MakeSlit(pointDF)

	

	
suncasa.utils.stackplot.getimprofile(data, cutslit, xrange=None, yrange=None, get_peak=False)

	

	
suncasa.utils.stackplot.smooth(x, window_len=11, window='hanning')

	smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.

	input:
	x: the input signal
window_len: the dimension of the smoothing window; should be an odd integer
window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’

flat window will produce a moving average smoothing.

	output:
	the smoothed signal

example:

t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter

NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.

	
suncasa.utils.stackplot.grid(x, y, z, resX=20, resY=40)

	Convert 3 column data to matplotlib grid

	
suncasa.utils.stackplot.polyfit(x, y, length, deg)

	

	
class suncasa.utils.stackplot.LightCurveBuilder(stackplt, axes, scale=1.0, color='white')

	
	
__call__(event)

	

	
update(mask=None)

	

	
save(event)

	

	
delete(event)

	

	
delete_byindex(index)

	

	
update_text()

	

	
lightcurves_tofile(outfile=None, lightcurves=None)

	

	
lightcurves_fromfile(infile, color=None)

	

	
class suncasa.utils.stackplot.SpaceTimeSlitBuilder(axes, cutlength=80, cutsmooth=10.0, scale=1.0, color='white')

	
	
__call__(event)

	

	
FitSlit(xx, yy, cutlength, method='Polyfit', s=0, ascending=True)

	polynomial fit

	
update(mask=None)

	

	
save(event)

	

	
delete(event)

	

	
delete_byindex(index)

	

	
update_text()

	

	
spacetimeslits_tofile(outfile=None, spacetimeslits=None)

	

	
spacetimeslits_fromfile(infile, color=None)

	

	
class suncasa.utils.stackplot.CutslitBuilder(axes, cutwidth=5, cutang=0, cutlength=80, cutsmooth=10.0, scale=1.0)

	
	
__call__(event)

	

	
update(mask=None)

	

	
class suncasa.utils.stackplot.Stackplot(infile=None)

	
	
property cutslit

	

	
property tplt

	

	
instrum_meta

	

	
aia_lvl1

	

	
suncasadb

	

	
mapcube

	

	
mapcube_diff

	

	
mapcube_plot

	

	
cutslitbd

	

	
stackplt

	

	
trange

	

	
wavelength

	

	
fitsfile

	

	
exptime_orig

	

	
fov

	

	
binpix

	

	
dt_data

	

	
divider_im

	

	
divider_dspec

	

	
sCutwdth

	

	
sCutang

	

	
sCutlngth

	

	
fig_mapcube

	

	
get_plot_title(smap, title)

	

	
plot_map(smap, dspec=None, diff=False, norm=None, cmap=None, SymLogNorm=False, linthresh=0.5, returnImAx=False, layout_vert=False, uni_cm=False, draw_limb=False, draw_grid=False, colortitle=None, title=['observatory', 'detector', 'wavelength', 'time'], fov=fov, *args, **kwargs)

	

	
make_mapcube(trange, outfile=None, fov=None, wavelength='171', binpix=1, dt_data=1, derotate=False, tosave=True, superpixel=False, aia_prep=False, mapinterp=False)

	

	
mapcube_fromfile(infile)

	

	
mapcube_tofile(outfile=None, mapcube=None)

	

	
mapcube_drot()

	

	
mapcube_resample(binpix=1)

	

	
mapcube_diff_denoise(log=False, vmax=None, vmin=None)

	

	
mapcube_mkdiff(mode='rdiff', dt=36.0, medfilt=None, gaussfilt=None, bfilter=False, lowcut=1 / 10 / 60.0, highcut=1 / 1 / 60.0, window=[None, None], outfile=None, tosave=False)

	
	Parameters:

	
	mode – accept modes: rdiff, rratio, bdiff, bratio, dtrend

	dt – time difference in second between frames when [rdiff, rratio, bdiff, bratio] is invoked

	medfilt –

	gaussfilt –

	bfilter – do butter bandpass filter

	lowcut – low cutoff frequency in Hz

	highcut – high cutoff frequency in Hz

	outfile –

	tosave –

	Returns:

	

	
plot_mapcube(mapcube=None, hdr=False, norm=None, vmax=None, vmin=None, cmap=None, diff=False, sav_img=False, out_dir=None, dpi=100, anim=False, silent=False, draw_limb=False, draw_grid=False, colortitle=None, title=['observatory', 'detector', 'wavelength', 'time'], fov=[], fps=15)

	
	Parameters:

	
	mapcube –

	hdr –

	vmax –

	vmin –

	diff –

	sav_img –

	out_dir –

	dpi –

	anim –

	Returns:

	

	
cutslit_fromfile(infile, color=None, mask=None)

	

	
cutslit_tofile(outfile=None, cutslit=None)

	

	
make_stackplot(mapcube, frm_range=[], threshold=None, gamma=1.0, get_peak=False)

	

	
stackplt_wrap()

	

	
stackplt_tofile(outfile=None, stackplt=None)

	

	
stackplt_fromfile(infile, **kwargs)

	

	
plot_stackplot(mapcube=None, hdr=False, norm=None, vmax=None, vmin=None, cmap=None, layout_vert=False, diff=False, uni_cm=True, sav_img=False, out_dir=None, dpi=100, anim=False, frm_range=[], cutslitplt=None, silent=False, refresh=True, threshold=None, gamma=1.0, get_peak=False)

	

	
stackplt_traject_fromfile(infile, frm_range=[], cmap='inferno', vmax=None, vmin=None, gamma=1.0)

	

	
stackplt_lghtcurv_fromfile(infile, frm_range=[], cmap='inferno', vmax=None, vmin=None, gamma=1.0, log=False, axes=None)

	

	
mapcube_info(mapcube=None)

	

	
classmethod set_fits_dir(fitsdir)

	

 suncasa.utils.stackplotX

suncasa.utils.stackplotX

Module Contents

Classes

	LightCurveBuilder

	

	SpaceTimeSlitBuilder

	

	CutslitBuilder

	

	Stackplot

	

Functions

	aiaprep(sunpymap)

	

	resettable(f)

	

	b_filter(data, lowcut, highcut, fs, ix)

	

	runningmean(data, window, mode, ix)

	
	param data:

	

	c_correlate(a, v[, returnx])

	

	XCorrMap(data[, refpix])

	

	XCorrStackplt(z, x, y[, doxscale])

	get the cross correlation map along y axis

	FitSlit(xx, yy, cutwidth, cutang, cutlength[, s, ...])

	

	MakeSlit(pointDF)

	

	getimprofile(data, cutslit[, xrange, yrange, ...])

	Get values at a slice

	smooth(x[, window_len, window])

	smooth the data using a window with requested size.

	grid(x, y, z[, resX, resY])

	Convert 3 column data to matplotlib grid

	polyfit(x, y, length, deg)

	

Attributes

	sunpy1

	

	
suncasa.utils.stackplotX.sunpy1

	

	
suncasa.utils.stackplotX.aiaprep(sunpymap)

	

	
suncasa.utils.stackplotX.resettable(f)

	

	
suncasa.utils.stackplotX.b_filter(data, lowcut, highcut, fs, ix)

	

	
suncasa.utils.stackplotX.runningmean(data, window, mode, ix)

	
	Parameters:

	
	data –

	window –

	ix –

	mode – available options are ratio and diff

	Returns:

	

	
suncasa.utils.stackplotX.c_correlate(a, v, returnx=False)

	

	
suncasa.utils.stackplotX.XCorrMap(data, refpix=[0, 0])

	

	
suncasa.utils.stackplotX.XCorrStackplt(z, x, y, doxscale=True)

	get the cross correlation map along y axis
:param z: data
:param x: x axis
:param y: y axis
:return:

	
suncasa.utils.stackplotX.FitSlit(xx, yy, cutwidth, cutang, cutlength, s=None, method='Polyfit', ascending=False)

	

	
suncasa.utils.stackplotX.MakeSlit(pointDF)

	

	
suncasa.utils.stackplotX.getimprofile(data, cutslit, xrange=None, yrange=None, get_peak=False, verbose=False)

	Get values at a slice

	Inputs:
	data: input image data. Dimension: (ny, nx) or (ny, nx, nwv). nwv is the number of wavelengths/frequencies
cutslit: cutslit generated from CutslitBuilder().cutslitplt
xrange: [min(xs), max(xs)], where xs is the x coordinate values of the input image data.

If None (default), assume pixel coordinate values in cutslit

	yrange: [min(ys), max(ys)], where ys is the y coordinate values of the input image data.
	If None (default), assume pixel coordinate values in cutslit

	get_peak: If True, return the peak of all pixels across the slit within the slit width.
	If False (default), return the average value.

verbose: If True, print out more details in command line. Default is False

	Returns:

	
	distance from min(cutslit[‘xcen’]), min(cutslit[‘ycen’])
	’y’: value on the cut, the shape is (len(cutslit[‘xcen’], [nwv])}

	Return type:

	A dictionary of {‘x’

	
suncasa.utils.stackplotX.smooth(x, window_len=11, window='hanning')

	smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.

	input:
	x: the input signal
window_len: the dimension of the smoothing window; should be an odd integer
window: the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’

flat window will produce a moving average smoothing.

	output:
	the smoothed signal

example:

t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)

see also:

numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter

NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.

	
suncasa.utils.stackplotX.grid(x, y, z, resX=20, resY=40)

	Convert 3 column data to matplotlib grid

	
suncasa.utils.stackplotX.polyfit(x, y, length, deg)

	

	
class suncasa.utils.stackplotX.LightCurveBuilder(stackplt, axes, scale=1.0, color='white')

	
	
__call__(event)

	

	
update(mask=None)

	

	
save(event)

	

	
delete(event)

	

	
delete_byindex(index)

	

	
update_text()

	

	
lightcurves_tofile(outfile=None, lightcurves=None)

	

	
lightcurves_fromfile(infile, color=None)

	

	
class suncasa.utils.stackplotX.SpaceTimeSlitBuilder(axes, dspec, cutlength=80, cutsmooth=10.0, scale=1.0, color='white')

	
	
__call__(event)

	

	
FitSlit(xx, yy, cutlength, method='Polyfit', s=0, ascending=True)

	polynomial fit

	
update(mask=None)

	

	
save(event)

	

	
delete(event)

	

	
delete_byindex(index)

	

	
update_text()

	

	
select_distance_along_a_slice(ixx)

	select points more accurately by doing it on a distance-flux plot

	
spacetimeslits_tofile(outfile=None, spacetimeslits=None)

	

	
spacetimeslits_fromfile(infile, color=None)

	

	
class suncasa.utils.stackplotX.CutslitBuilder(axes, cutwidth=5.0, cutlength=150, cutang=0.0, cutsmooth=10.0, scale=1.0)

	
	
__call__(event)

	

	
update(mask=None)

	

	
class suncasa.utils.stackplotX.Stackplot(infile=None)

	
	
property cutslit

	

	
property tplt

	

	
instrum_meta

	

	
aia_lvl1

	

	
suncasadb

	

	
mapseq

	

	
mapseq_diff

	

	
mapseq_plot

	

	
cutslitbd

	

	
stackplt

	

	
trange

	

	
wavelength

	

	
fitsfile

	

	
exptime_orig

	

	
fov

	

	
binpix

	

	
dt_data

	

	
divider_im

	

	
divider_dspec

	

	
sCutwdth

	

	
sCutang

	

	
fig_mapseq

	

	
pixscale

	

	
get_plot_title(smap, title)

	

	
plot_map(smap, dspec=None, diff=False, norm=None, cmap=None, SymLogNorm=False, linthresh=0.5, returnImAx=False, layout_vert=False, uni_cm=False, draw_limb=False, draw_grid=False, colortitle=None, title=['observatory', 'detector', 'wavelength', 'time'], fov=fov, *args, **kwargs)

	

	
make_mapseq(trange, outfile=None, fov=None, wavelength='171', binpix=1, dt_data=1, derotate=False, tosave=True, superpixel=False, aia_prep=False, mapinterp=False, overwrite=False, dtype=None, normalize=True)

	

	
mapseq_fromfile(infile)

	

	
mapseq_tofile(outfile=None, mapseq=None)

	

	
mapseq_drot()

	

	
mapseq_resample(binpix=1)

	

	
mapseq_diff_denoise(log=False, vmax=None, vmin=None)

	

	
mapseq_mkdiff(mode='rdiff', dt=36.0, medfilt=None, gaussfilt=None, bfilter=False, lowcut=1 / 10 / 60.0, highcut=1 / 1 / 60.0, window=[None, None], outfile=None, tosave=False, dtype=None)

	
	Parameters:

	
	mode – accept modes: rdiff, rratio, bdiff, bratio, dtrend, dtrend_diff, dtrend_ratio

	dt – time difference in second between frames when [rdiff, rratio, bdiff, bratio] is invoked

	medfilt –

	gaussfilt –

	bfilter – do butter bandpass filter

	lowcut – low cutoff frequency in Hz

	highcut – high cutoff frequency in Hz

	outfile –

	tosave –

	Returns:

	

	
plot_mapseq(mapseq=None, hdr=False, norm=None, vmax=None, vmin=None, cmap=None, diff=False, sav_img=False, out_dir=None, dpi=100, anim=False, silent=False, draw_limb=False, draw_grid=False, colortitle=None, title=['observatory', 'detector', 'wavelength', 'time'], fov=[], fps=15)

	
	Parameters:

	
	mapseq –

	hdr –

	vmax –

	vmin –

	diff –

	sav_img –

	out_dir –

	dpi –

	anim –

	Returns:

	

	
cutslit_fromfile(infile, color=None, mask=None)

	

	
cutslit_tofile(outfile=None, cutslit=None)

	

	
make_stackplot(mapseq, frm_range=[], threshold=None, gamma=1.0, get_peak=False, trackslit_diffrot=False, negval=False, movingcut=[])

	movingcut: [x,y]. x and y are an array of offset in X and Y direction, respectively. the length of x/y is nframes

	
stackplt_wrap()

	

	
stackplt_tofile(outfile=None, stackplt=None)

	

	
stackplt_fromfile(infile, doplot=False, **kwargs)

	

	
plot_stackplot(mapseq=None, fov=None, hdr=False, norm=None, vmax=None, vmin=None, cmap=None, layout_vert=False, diff=False, uni_cm=True, sav_img=False, out_dir=None, dpi=100, anim=False, frm_range=[], cutslitplt=None, silent=False, refresh=True, threshold=None, gamma=1.0, get_peak=False, trackslit_diffrot=False, negval=False, movingcut=[])

	

	
stackplt_traject_fromfile(infile, frm_range=[], cmap='inferno', norm=None, gamma=1.0)

	

	
stackplt_lghtcurv_fromfile(infile, frm_range=[], cmap='inferno', norm=None, gamma=1.0, log=False, axes=None)

	

	
mapseq_info(mapseq=None)

	

	
classmethod set_fits_dir(fitsdir)

	

 suncasa.utils.stputils

suncasa.utils.stputils

Module Contents

Functions

	insertchar(source_str, insert_str, pos)

	

	get_curve_grad(x, y)

	get the grad of at data point

	findDist(x, y)

	

	paramspline(x, y, length[, s])

	

	polyfit(x, y, length, deg[, keepxorder])

	

	improfile(z, xi, yi[, interp])

	Pixel-value cross-section along line segment in an image

	map2wcsgrids(snpmap[, cell, antialiased])

	
	param snpmap:

	

	readsdofile([datadir, wavelength, trange, isexists, ...])

	read sdo file from local database

	get_map_corner_coord(sunpymap)

	

Attributes

	__author__

	

	__email__

	

	
suncasa.utils.stputils.__author__ = ['Sijie Yu']

	

	
suncasa.utils.stputils.__email__ = 'sijie.yu@njit.edu'

	

	
suncasa.utils.stputils.insertchar(source_str, insert_str, pos)

	

	
suncasa.utils.stputils.get_curve_grad(x, y)

	get the grad of at data point
:param x:
:param y:
:return: grad,posang

	
suncasa.utils.stputils.findDist(x, y)

	

	
suncasa.utils.stputils.paramspline(x, y, length, s=0)

	

	
suncasa.utils.stputils.polyfit(x, y, length, deg, keepxorder=False)

	

	
suncasa.utils.stputils.improfile(z, xi, yi, interp='cubic')

	Pixel-value cross-section along line segment in an image
:param z: an image array
:param xi and yi: equal-length vectors specifying the pixel coordinates of the endpoints of the line segment
:param interp: interpolation type to sampling, ‘nearest’ or ‘cubic’
:return: the intensity values of pixels along the line

	
suncasa.utils.stputils.map2wcsgrids(snpmap, cell=True, antialiased=True)

	
	Parameters:

	
	snpmap –

	cell – if True, return the coordinates of the pixel centers. if False, return the coordinates of the pixel boundaries

	Returns:

	

	
suncasa.utils.stputils.readsdofile(datadir=None, wavelength=None, trange=None, isexists=False, timtol=1, ignoreymdpath=False, suffix='image_lev1')

	read sdo file from local database
:param datadir:
:param wavelength:
:param trange: the timestamp or timerange in Julian days. if is timerange, return a list of files in the timerange
:param isexists: check if file exist. if files exist, return file name
:param timtol: time difference tolerance in days for considering data as the same timestamp
:return:

	
suncasa.utils.stputils.get_map_corner_coord(sunpymap)

	

 suncasa.casa_compat

suncasa.casa_compat

casa_compat.py

Provides a uniform interface for importing CASA (Common Astronomy Software Applications) tools across different versions and Python environments. It supports both the monolithic (CASA 4/5/6) and modular (CASA 6+) installations.

This script dynamically imports CASA components, addressing the architectural changes between versions. In monolithic installations, components are available as instantiated objects. In modular installations, components are accessed through casatools and casatasks.

Function:
- get_casa_tools(alias_list): Returns a dictionary of requested CASA tool instances. It accepts a list of tool aliases and handles dynamic import or built-in object access, ensuring compatibility across CASA versions.

Parameters:
- alias_list (list of str): Aliases for CASA tools to import. Defaults to a common set of tools.

Returns:
- dict: Mapping of tool aliases to their instances or objects.

	Usage example:
	casa_tools = get_casa_tools([‘tbtool’, ‘mstool’, ‘qatool’, ‘iatool’, ‘rgtool’, ‘msmdtool’, ‘smtool’, ‘metool’])
for alias, instance in casa_tools.items():

print(f”{alias}: {instance}”)

The function uses importlib for CASA 6+ and falls back to direct access in earlier versions or interactive sessions.

Module Contents

Functions

	check_dependencies()

	

	import_casatools([alias_list])

	Dynamically imports and returns CASA tools specified by their aliases.

	import_casatasks(*task_names)

	Dynamically imports specified CASA tasks from the casatasks module. This is designed to uniformly import CASA tasks

Attributes

	tool_mapping

	

	
suncasa.casa_compat.tool_mapping

	

	
suncasa.casa_compat.check_dependencies()

	

	
suncasa.casa_compat.import_casatools(alias_list=['tbtool', 'mstool', 'qatool', 'iatool', 'rgtool', 'msmdtool', 'smtool', 'metool'])

	Dynamically imports and returns CASA tools specified by their aliases.

Parameters:
alias_list (list of str): Aliases of the CASA tools to be imported and returned.

Returns:
dict: A dictionary with keys as tool aliases and values as the imported modules or objects.

	
suncasa.casa_compat.import_casatasks(*task_names)

	Dynamically imports specified CASA tasks from the casatasks module. This is designed to uniformly import CASA tasks
for both monolithic and modular CASA installations, addressing the issue where direct task import is not supported
in monolithic CASA versions.

Intended for modular CASA 6+ installations where tasks are accessed via casatasks. For monolithic CASA
(versions 4/5/6), this function provides a unified interface, though direct imports are handled via the global namespace.

Parameters:
- task_names (str): Names of CASA tasks to import.

Returns:
- dict: Mapping of task names to their corresponding functions.

Raises:
- ImportError: If a task is not found in casatasks.

 pmaxfit

pmaxfit

Module Contents

Classes

	_pmaxfit

	pmaxfit ---- Find maximum and do parabolic fit in the sky

Functions

	static_var(varname, value)

	

Attributes

	pmaxfit

	

	
pmaxfit.static_var(varname, value)

	

	
class pmaxfit._pmaxfit

	pmaxfit —- Find maximum and do parabolic fit in the sky

PARAMETER SUMMARY
imagename Name of the input image
box Rectangular region(s) to select in direction plane. See “help par.box”
for details. Default is to use the entire direction plane.
eg “100, 120, 200, 220, 300, 300, 400, 400” to use two boxes.

OVERVIEW
This application finds the pixel with the maximum value in the region, and then uses function
findsources to generate a Componentlist with one component.

The method returns a dictionary with fours keys, ‘succeeded’, ‘timestamps’, ‘imagenames’
and ‘outputs’. The value of ‘outputs’ is a dictionary representing
a component list reflecting the fit results over multiple channels.
Both the ‘outputs’ dictionaries can be read into a component list tool (default tool is named cl)
using the fromrecord() method for easier inspection using tool methods, eg

FITTING OVER MULTIPLE CHANNELS

For fitting over multiple channels, the result of the previous successful fit is used as
the estimate for the next channel. The number of gaussians fit cannot be varied on a channel
by channel basis. Thus the variation of source structure should be reasonably smooth in
frequency to produce reliable fit results.

——— parameter descriptions ———————————————

imagefiles A list of the input images
ncpu Number of cpu cores to use
box Rectangular region(s) to select in direction plane. See “help par.box” for details. Default is to use the entire direction plane.
width Half-width of fit grid

 calibeovsa

calibeovsa

Module Contents

Classes

	_calibeovsa

	calibeovsa ---- Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.

Functions

	static_var(varname, value)

	

Attributes

	calibeovsa

	

	
calibeovsa.static_var(varname, value)

	

	
class calibeovsa._calibeovsa

	calibeovsa —- Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.

Calibrating EOVSA one or more measurement sets using calibration products in the SQL database. This task currently only works on pipeline.

——— parameter descriptions ———————————————

vis input EOVSA (uncalibrated) measurement set(s).
caltype Types of calibrations to perform
caltbdir Directory to place calibration tables.
interp Temporal interpolation for phacal table(s) (nearest or linear)
docalib If False, only create the calibration tables but do not perform applycal.
doflag If true then perform flagging.
flagant Antennas to be flagged. Follow CASA syntax of “antenna”.
doimage If True, produce a quicklook image after calibration (sunpy must be installed).
imagedir directory to place output images. Default current directory.
antenna antenna/baselines to be used for imaging. Follow CASA syntax of “antenna”.
timerange Timerange to be imaged. Follow CASA syntax of “timerange”. Default is the entire duration of the ms.
spw spectral windows to be imaged. Follow CASA syntax of “spw”.
stokes stokes to be imaged. Follow CASA syntax of “stokes”.
dosplit If True, plit the corrected data column as output visibility file.
outputvis Name of output visibility file. Default is the name of the first vis file ended with “.corrected.ms”.
doconcat If True, and if more than one visibility dataset provided, concatenate all into one visibility.
concatvis Name of output visibility file. Default is the name of the first + last vis file ended with “.corrected.ms”.
keep_orig_ms Keep the original seperated ms datasets after split?

——— examples ———————————————————–

Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.

Detailed Keyword arguments:

vis – Name of input EOVSA measurement set dataset(s)
default: none. Must be supplied
example: vis = ‘IDB20160524000518.ms’
example: vis = [‘IDB20160524000518.ms’,’IDB20160524000528.ms’]

caltype – list. Type of calibrations to be applied.
‘refpha’: reference phase calibration
‘refamp’: reference amplitude calibration (not used anymore)
‘phacal’: daily phase calibration
‘fluxcal’: flux calibration based on total-power measurements
default value: [‘refpha’,’phacal’]
* note fluxcal is already implemented in udb_corr when doing importeovsa, should not be used anymore **
*** pipeline only uses [‘refpha’,’phacal’]

caltbdir – string. Place to hold calibration tables. Default is current directory. Pipeline should use /data1/eovsa/caltable

interp – string. How interpolation is done for phacal? ‘nearest’ or ‘linear’

docalib – boolean. Default True. If False, only create the calibration tables but do not perform applycal

doflag – boolean. Default True. Peforming flags?

flagant – string. Follow CASA antenna selection syntax. Default ‘13~15’.

doimage – boolean. Default False. If true, make a quicklook image using the specified time range and specified spw range

imagedir – string. Directory to place the output image.

antenna – string. Default ‘0~12’. Antenna/baselines to be used for imaging. Follow CASA antenna selection syntax.

timerange – string. Default ‘’ (the whole duration of the visibility data). Follow CASA timerange syntax.
e.g., ‘2017/07/11/20:16:00~2017/07/11/20:17:00’

spw – string. Default ‘1~3’. Follow CASA spw selection syntax.

stokes – string. Which stokes for the quicklook image. CASA syntax. Default ‘XX’

dosplit – boolean. Split the corrected data column?

outputvis – string. Output visibility file after split

doconcat – boolean. If more than one visibility dataset provided, concatenate all into one or make separate outputs if True

concatvis – string. Output visibility file after concatenation

keep_orig_ms – boolean. Default True. Inherited from suncasa.eovsa.concateovsa.
Keep the original seperated ms datasets after concatenation?

	
_info_group_ = 'Calibration'

	

	
_info_desc_ = 'Calibrating EOVSA one or more measurement sets using calibration products in the SQL database.'

	

	
__schema

	

	
__globals_()

	

	
__to_string_(value)

	

	
__validate_(doc, schema)

	

	
__do_inp_output(param_prefix, description_str, formatting_chars)

	

	
__doimage_dflt(glb)

	

	
__doimage(glb)

	

	
__vis_dflt(glb)

	

	
__vis(glb)

	

	
__caltbdir_dflt(glb)

	

	
__caltbdir(glb)

	

	
__docalib_dflt(glb)

	

	
__docalib(glb)

	

	
__interp_dflt(glb)

	

	
__interp(glb)

	

	
__caltype_dflt(glb)

	

	
__caltype(glb)

	

	
__doflag_dflt(glb)

	

	
__doflag(glb)

	

	
__dosplit_dflt(glb)

	

	
__dosplit(glb)

	

	
__doconcat_dflt(glb)

	

	
__doconcat(glb)

	

	
__antenna_dflt(glb)

	

	
__stokes_dflt(glb)

	

	
__flagant_dflt(glb)

	

	
__concatvis_dflt(glb)

	

	
__outputvis_dflt(glb)

	

	
__keep_orig_ms_dflt(glb)

	

	
__imagedir_dflt(glb)

	

	
__spw_dflt(glb)

	

	
__timerange_dflt(glb)

	

	
__flagant(glb)

	

	
__imagedir(glb)

	

	
__antenna(glb)

	

	
__timerange(glb)

	

	
__spw(glb)

	

	
__stokes(glb)

	

	
__outputvis(glb)

	

	
__concatvis(glb)

	

	
__keep_orig_ms(glb)

	

	
__vis_inp()

	

	
__caltype_inp()

	

	
__caltbdir_inp()

	

	
__interp_inp()

	

	
__docalib_inp()

	

	
__doflag_inp()

	

	
__flagant_inp()

	

	
__doimage_inp()

	

	
__imagedir_inp()

	

	
__antenna_inp()

	

	
__timerange_inp()

	

	
__spw_inp()

	

	
__stokes_inp()

	

	
__dosplit_inp()

	

	
__outputvis_inp()

	

	
__doconcat_inp()

	

	
__concatvis_inp()

	

	
__keep_orig_ms_inp()

	

	
set_global_defaults()

	

	
inp()

	

	
tget(savefile=None)

	

	
tput(outfile=None)

	

	
__call__(vis=None, caltype=None, caltbdir=None, interp=None, docalib=None, doflag=None, flagant=None, doimage=None, imagedir=None, antenna=None, timerange=None, spw=None, stokes=None, dosplit=None, outputvis=None, doconcat=None, concatvis=None, keep_orig_ms=None)

	

	
calibeovsa.calibeovsa

	

 concateovsa

concateovsa

Module Contents

Classes

	_concateovsa

	concateovsa ---- Concatenate several EOVSA visibility data sets.

Functions

	static_var(varname, value)

	

Attributes

	concateovsa

	

	
concateovsa.static_var(varname, value)

	

	
class concateovsa._concateovsa

	concateovsa —- Concatenate several EOVSA visibility data sets.

This is a EOVSA version of CASA concat task.

The list of data sets given in the vis argument are chronologically concatenated
into an output data set in concatvis, i.e. the data sets in vis are first ordered
by the time of their earliest integration and then concatenated.

If there are fields whose direction agrees within the direction tolerance
(parameter dirtol), the actual direction in the resulting, merged output field
will be the one from the chronologically first input MS.

If concatvis already exists (e.g., it is the same as the first input data set),
then the other input data sets will be appended to the concatvis data set.
There is no limit to the number of input data sets.

If none of the input data sets have any scratch columns (model and corrected
columns), none are created in the concatvis. Otherwise these columns are
created on output and initialized to their default value (1 in model column,
data in corrected column) for those data with no input columns.

Spectral windows for each data set with the same chanelization, and within a
specified frequency tolerance of another data set will be combined into one
spectral window.

A field position in one data set that is within a specified direction tolerance
of another field position in any other data set will be combined into one
field. The field names need not be the same—only their position is used.

Each appended dataset is assigned a new observation id (provided the entries
in the observation table are indeed different).

Keyword arguments:
vis – Name of input visibility files to be combined
default: none; example: vis = [‘src2.ms’,’ngc5921.ms’,’ngc315.ms’]
concatvis – Name of visibility file that will contain the concatenated data
note: if this file exits on disk then the input files are
added to this file. Otherwise the new file contains
the concatenated data. Be careful here when concatenating to
an existing file.
default: none; example: concatvis=’src2.ms’
example: concatvis=’outvis.ms’

datacolumn – Which data column to use for processing (case-insensitive).
default: ‘corrected’; example: datacolumn=’data’
options: ‘data’, ‘corrected’.

freqtol – Frequency shift tolerance for considering data to be in the same
spwid. The number of channels must also be the same.
default: ‘’ == 1 Hz
example: freqtol=’10MHz’ will not combine spwid unless they are
within 10 MHz.
Note: This option is useful to combine spectral windows with very slight
frequency differences caused by Doppler tracking, for example.

dirtol – Direction shift tolerance for considering data as the same field
default: ‘’ == 1 mas (milliarcsec)
example: dirtol=’1arcsec’ will not combine data for a field unless
their phase center differ by less than 1 arcsec. If the field names
are different in the input data sets, the name in the output data
set will be the first relevant data set in the list.

respectname – If true, fields with a different name are not merged even if their
direction agrees (within dirtol)
default: False

timesort – If true, the output visibility table will be sorted in time.
default: false. Data in order as read in.
example: timesort=true
Note: There is no constraint on data that is simultaneously observed for
more than one field; for example multi-source correlation of VLBA data.

copypointing – Make a proper copy of the POINTING subtable (can be time consuming).
If False, the result is an empty POINTING table.
default: True

visweightscale – The weights of the individual MSs will be scaled in the concatenated
output MS by the factors in this list. SIGMA will be scaled by 1/sqrt(factor).
Useful for handling heterogeneous arrays.
Use plotms to inspect the “Wt” column as a reference for determining the scaling
factors. See the cookbook for more details.
example: [1.,3.,3.] - scale the weights of the second and third MS by a factor 3
and the SIGMA column of these MS by a factor 1/sqrt(3).
default: [] (empty list) - no scaling

forcesingleephemfield – By default, concat will only merge two ephemeris fields if
the first ephemeris covers the time range of the second. Otherwise, two separate
fields with separate ephemerides are placed in the output MS.
In order to override this behaviour and make concat merge the non-overlapping
or only partially overlapping input ephemerides, the name or id of the field
in question needs to be placed into the list in parameter ‘forcesingleephemfield’.
example: [‘Neptune’] - will make sure that there is only one joint ephemeris for
field Neptune in the output MS
default: ‘’ - standard treatment of all ephemeris fields

——— parameter descriptions ———————————————

vis Name of input visibility files to be concatenated
concatvis Name of output visibility file
datacolumn Which data column(s) to concatenate
keep_orig_ms If false, input vis files will be removed
cols2rm Columns in concatvis to be removed to slim the concatvis
freqtol Frequency shift tolerance for considering data as the same spwid
dirtol Direction shift tolerance for considering data as the same field
respectname If true, fields with a different name are not merged even if their direction agrees
timesort If true, sort by TIME in ascending order
copypointing Copy all rows of the POINTING table.
visweightscale List of the weight scaling factors to be applied to the individual MSs
forcesingleephemfield make sure that there is only one joint ephemeris for every field in this list

——— examples ———————————————————–

concateovsa(vis=[‘UDB20180102161402.ms’,’UDB20180102173518.ms’], concatvis=’UDB20180102_allday.ms’)
will concatenate ‘UDB20180102161402.ms’ and ‘UDB20180102173518.ms’ into ‘UDB20180102_allday.ms’

	
_info_group_ = 'utility, manipulation'

	

	
_info_desc_ = 'Concatenate several EOVSA visibility data sets.'

	

	
__schema

	

	
__globals_()

	

	
__to_string_(value)

	

	
__validate_(doc, schema)

	

	
__do_inp_output(param_prefix, description_str, formatting_chars)

	

	
__forcesingleephemfield_dflt(glb)

	

	
__forcesingleephemfield(glb)

	

	
__vis_dflt(glb)

	

	
__vis(glb)

	

	
__dirtol_dflt(glb)

	

	
__dirtol(glb)

	

	
__timesort_dflt(glb)

	

	
__timesort(glb)

	

	
__datacolumn_dflt(glb)

	

	
__datacolumn(glb)

	

	
__respectname_dflt(glb)

	

	
__respectname(glb)

	

	
__keep_orig_ms_dflt(glb)

	

	
__keep_orig_ms(glb)

	

	
__visweightscale_dflt(glb)

	

	
__visweightscale(glb)

	

	
__concatvis_dflt(glb)

	

	
__concatvis(glb)

	

	
__copypointing_dflt(glb)

	

	
__copypointing(glb)

	

	
__cols2rm_dflt(glb)

	

	
__cols2rm(glb)

	

	
__freqtol_dflt(glb)

	

	
__freqtol(glb)

	

	
__vis_inp()

	

	
__concatvis_inp()

	

	
__datacolumn_inp()

	

	
__keep_orig_ms_inp()

	

	
__cols2rm_inp()

	

	
__freqtol_inp()

	

	
__dirtol_inp()

	

	
__respectname_inp()

	

	
__timesort_inp()

	

	
__copypointing_inp()

	

	
__visweightscale_inp()

	

	
__forcesingleephemfield_inp()

	

	
set_global_defaults()

	

	
inp()

	

	
tget(file=None)

	

	
__call__(vis=None, concatvis=None, datacolumn=None, keep_orig_ms=None, cols2rm=None, freqtol=None, dirtol=None, respectname=None, timesort=None, copypointing=None, visweightscale=None, forcesingleephemfield=None)

	

	
concateovsa.concateovsa

	

 pimfit

pimfit

Module Contents

Classes

	_pimfit

	pimfit ---- Fit one or more elliptical Gaussian components on an image region(s)

Functions

	static_var(varname, value)

	

Attributes

	pimfit

	

	
pimfit.static_var(varname, value)

	

	
class pimfit._pimfit

	pimfit —- Fit one or more elliptical Gaussian components on an image region(s)

——— parameter descriptions ———————————————

imagefiles A list of the input images
ncpu Number of cpu cores to use
doreg True if use vla_prep to register the image
ephemfile emphemeris file generated from vla_prep.read_horizons()
timestamps A list of timestamps of the input images
msinfofile time-dependent phase center information generated from vla_prep.read_msinfo()
box Rectangular region(s) to select in direction plane. See “help par.box” for details. Default is to use the entire direction plane.
region Region selection. See “help par.region” for details. Default is to use the full image.
chans Channels to use. See “help par.chans” for details. Default is to use all channels.
stokes Stokes planes to use. See “help par.stokes” for details. Default is to use first Stokes plane.
mask Mask to use. See help par.mask. Default is none.
includepix Range of pixel values to include for fitting.
excludepix Range of pixel values to exclude for fitting.
residual Name of output residual image.
model Name of output model image.
estimates Name of file containing initial estimates of component parameters.
logfile Name of file to write fit results.
append If logfile exists, append to it if True or overwrite it if False
newestimates File to write fit results which can be used as initial estimates for next run.
complist Name of output component list table.
overwrite Overwrite component list table if it exists?
dooff Also fit a zero level offset? Default is False
offset Initial estimate of zero-level offset. Only used if doff is True. Default is 0.0
fixoffset Keep the zero level offset fixed during fit? Default is False
stretch Stretch the mask if necessary and possible? See help par.stretch
rms RMS to use in calculation of uncertainties. Numeric or valid quantity (record or string). If numeric, it is given units of the input image. If quantity, units must conform to image units. If not positive, the rms of the residual image, in the region of the fit, is used.
noisefwhm Noise correlation beam FWHM. If numeric value, interpreted as pixel widths. If quantity (dictionary, string), it must have angular units.
summary File name to which to write table of fit parameters.

 ptclean

ptclean

Module Contents

Classes

	_ptclean

	ptclean ---- Parallelized tclean in consecutive time steps

Functions

	static_var(varname, value)

	

Attributes

	ptclean

	

	
ptclean.static_var(varname, value)

	

	
class ptclean._ptclean

	ptclean —- Parallelized tclean in consecutive time steps

Parallelized clean in consecutive time steps. Packed over CASA tclean.

——— parameter descriptions ———————————————

	vis Name(s) of input visibility file(s)
	default: none;
example: vis=’ngc5921.ms’

vis=[‘ngc5921a.ms’,’ngc5921b.ms’]; multiple MSes

imageprefix Prefix of output image names (usually useful in defining the output path)
imagesuffix Suffix of output image names (usually useful in specifyting the image type, version, etc.)
ncpu Number of cpu cores to use
twidth Number of time pixels to average
doreg True if use vla_prep to register the image
usephacenter True if use the phacenter information from the measurement set (e.g., VLA); False to assume the phase center is at the solar disk center (EOVSA)
reftime Reference time of the J2000 coordinates associated with the ephemeris target. e.g., “2012/03/03/12:00”. This is used for helioimage2fits.py to find the solar x y offset in order to register the image. If not set, use the actual timerange of the image (default)
toTb True if convert to brightness temperature
sclfactor scale the brightness temperature up by its value
subregion The name of a CASA region string

The name of a CASA image or region file or region string. Only locations within the region will
output to the fits file.
If regions specified fall completely outside of the image, ptclean will throw an error.

Manual mask options/examples :

subregion=’box[[224pix,224pix],[288pix,288pix]]’ : A CASA region string.

docompress True if compress the output fits files
overwrite True if overwrite the image
selectdata Enable data selection parameters.
field to image or mosaic. Use field id(s) or name(s).

[‘go listobs’ to obtain the list id’s or names]

	default: ‘’= all fields
	If field string is a non-negative integer, it is assumed to
be a field index otherwise, it is assumed to be a

field name

field=’0~2’; field ids 0,1,2
field=’0,4,5~7’; field ids 0,4,5,6,7
field=’3C286,3C295’; field named 3C286 and 3C295
field = ‘3,4C*’; field id 3, all names starting with 4C
For multiple MS input, a list of field strings can be used:
field = [‘0~2’,’0~4’]; field ids 0-2 for the first MS and 0-4

for the second

field = ‘0~2’; field ids 0-2 for all input MSes

	spw l window/channels
	
	NOTE: channels de-selected here will contain all zeros if
	selected by the parameter mode subparameters.

	default: ‘’=all spectral windows and channels
	spw=’0~2,4’; spectral windows 0,1,2,4 (all channels)
spw=’0:5~61’; spw 0, channels 5 to 61
spw=’<2’; spectral windows less than 2 (i.e. 0,1)
spw=’0,10,3:3~45’; spw 0,10 all channels, spw 3,

channels 3 to 45.

spw=’0~2:2~6’; spw 0,1,2 with channels 2 through 6 in each.
For multiple MS input, a list of spw strings can be used:
spw=[‘0’,’0~3’]; spw ids 0 for the first MS and 0-3 for the second
spw=’0~3’ spw ids 0-3 for all input MS
spw=’3:10~20;50~60’ for multiple channel ranges within spw id 3
spw=’3:10~20;50~60,4:0~30’ for different channel ranges for spw ids 3 and 4
spw=’0:0~10,1:20~30,2:1;2;3’; spw 0, channels 0-10,

spw 1, channels 20-30, and spw 2, channels, 1,2 and 3

spw=’1~4;6:15~48’ for channels 15 through 48 for spw ids 1,2,3,4 and 6

timerange Range of time to select from data

default: ‘’ (all); examples,
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
Note: if YYYY/MM/DD is missing date defaults to first

day in data set

timerange=’09:14:0~09:54:0’ picks 40 min on first day
timerange=’25:00:00~27:30:00’ picks 1 hr to 3 hr

30min on NEXT day

	timerange=’09:44:00’ pick data within one integration
	of time

timerange=’> 10:24:00’ data after this time
For multiple MS input, a list of timerange strings can be
used:
timerange=[‘09:14:0~09:54:0’,’> 10:24:00’]
timerange=’09:14:0~09:54:0’’; apply the same timerange for

all input MSes

	uvrange Select data within uvrange (default unit is meters)
	default: ‘’ (all); example:
uvrange=’0~1000klambda’; uvrange from 0-1000 kilo-lambda
uvrange=’> 4klambda’;uvranges greater than 4 kilo lambda
For multiple MS input, a list of uvrange strings can be
used:
uvrange=[‘0~1000klambda’,’100~1000klamda’]
uvrange=’0~1000klambda’; apply 0-1000 kilo-lambda for all

input MSes

antenna Select data based on antenna/baseline

default: ‘’ (all)
If antenna string is a non-negative integer, it is

assumed to be an antenna index, otherwise, it is
considered an antenna name.

	antenna=’5&6’; baseline between antenna index 5 and
	index 6.

	antenna=’VA05&VA06’; baseline between VLA antenna 5
	and 6.

antenna=’5&6;7&8’; baselines 5-6 and 7-8
antenna=’5’; all baselines with antenna index 5
antenna=’05’; all baselines with antenna number 05

(VLA old name)

	antenna=’5,6,9’; all baselines with antennas 5,6,9
	index number

For multiple MS input, a list of antenna strings can be
used:
antenna=[‘5’,’5&6’];
antenna=’5’; antenna index 5 for all input MSes
antenna=’!DV14’; use all antennas except DV14

scan Scan number range

default: ‘’ (all)
example: scan=’1~5’
For multiple MS input, a list of scan strings can be used:
scan=[‘0~100’,’10~200’]
scan=’0~100; scan ids 0-100 for all input MSes

	observation Observation ID range
	default: ‘’ (all)
example: observation=’1~5’

intent Scan Intent(s)

default: ‘’ (all)
example: intent=’TARGET_SOURCE’
example: intent=’TARGET_SOURCE1,TARGET_SOURCE2’
example: intent=’TARGET_POINTING*’

	datacolumn Data column to image (data or observed, corrected)
	default:’data’
(If ‘corrected’ does not exist, it will use ‘data’ instead)

	imsize Number of pixels
	
	exampleimsize = [350,250]
	imsize = 500 is equivalent to [500,500]

To take proper advantage of internal optimized FFT routines, the
number of pixels must be even and factorizable by 2,3,5,7 only.

	cell Cell size
	example: cell=[‘0.5arcsec,’0.5arcsec’] or
cell=[‘1arcmin’, ‘1arcmin’]
cell = ‘1arcsec’ is equivalent to [‘1arcsec’,’1arcsec’]

	phasecenter Phase center of the image (string or field id); if the phasecenter is the name known major solar system object (‘MERCURY’, ‘VENUS’, ‘MARS’, ‘JUPITER’, ‘SATURN’, ‘URANUS’, ‘NEPTUNE’, ‘PLUTO’, ‘SUN’, ‘MOON’) or is an ephemerides table then that source is tracked and the background sources get smeared. There is a special case, when phasecenter=’TRACKFIELD’, which will use the ephemerides or polynomial phasecenter in the FIELD table of the MS’s as the source center to track.
	
	example: phasecenter=6
	phasecenter=’J2000 19h30m00 -40d00m00’
phasecenter=’J2000 292.5deg -40.0deg’
phasecenter=’J2000 5.105rad -0.698rad’
phasecenter=’ICRS 13:05:27.2780 -049.28.04.458’

phasecenter=’myComet_ephem.tab’
phasecenter=’MOON’
phasecenter=’TRACKFIELD’

	stokes Stokes Planes to make
	
	default=’I’; example: stokes=’IQUV’;
	Options: ‘I’,’Q’,’U’,’V’,’IV’,’QU’,’IQ’,’UV’,’IQUV’,’RR’,’LL’,’XX’,’YY’,’RRLL’,’XXYY’,’pseudoI’

	NoteDue to current internal code constraints, if any correlation pair
	is flagged, by default, no data for that row in the MS will be used.
So, in an MS with XX,YY, if only YY is flagged, neither a
Stokes I image nor an XX image can be made from those data points.
In such a situation, please split out only the unflagged correlation into
a separate MS.

	NoteThe ‘pseudoI’ option is a partial solution, allowing Stokes I imaging
	when either of the parallel-hand correlations are unflagged.

The remaining constraints shall be removed (where logical) in a future release.

	projection Coordinate projection
	Examples : SIN, NCP
A list of supported (but untested) projections can be found here :
http://casa.nrao.edu/active/docs/doxygen/html/classcasa_1_1Projection.html#a3d5f9ec787e4eabdce57ab5edaf7c0cd

startmodel Name of starting model image

The contents of the supplied starting model image will be
copied to the imagename.model before the run begins.

example : startmodel = ‘singledish.im’

For deconvolver=’mtmfs’, one image per Taylor term must be provided.
example : startmodel = [‘try.model.tt0’, ‘try.model.tt1’]

	startmodel = [‘try.model.tt0’] will use a starting model only
	for the zeroth order term.

	startmodel = [‘’,’try.model.tt1’] will use a starting model only
	for the first order term.

This starting model can be of a different image shape and size from
what is currently being imaged. If so, an image regrid is first triggered
to resample the input image onto the target coordinate system.

A common usage is to set this parameter equal to a single dish image

Negative components in the model image will be included as is.

	[NoteIf an error occurs during image resampling/regridding,
	please try using task imregrid to resample the starting model
image onto a CASA image with the target shape and
coordinate system before supplying it via startmodel]

specmode Spectral definition mode (mfs,cube,cubedata, cubesource)

	mode=’mfs’Continuum imaging with only one output image channel.
	(mode=’cont’ can also be used here)

	mode=’cube’Spectral line imaging with one or more channels
	
Parameters start, width,and nchan define the spectral
coordinate system and can be specified either in terms
of channel numbers, frequency or velocity in whatever
spectral frame is specified in ‘outframe’.
All internal and output images are made with outframe as the
base spectral frame. However imaging code internally uses the fixed
spectral frame, LSRK for automatic internal software
Doppler tracking so that a spectral line observed over an
extended time range will line up appropriately.
Therefore the output images have additional spectral frame conversion
layer in LSRK on the top the base frame.

	(NoteEven if the input parameters are specified in a frame
	other than LSRK, the viewer still displays spectral
axis in LSRK by default because of the conversion frame
layer mentioned above. The viewer can be used to relabel
the spectral axis in any desired frame - via the spectral
reference option under axis label properties in the
data display options window.)

	mode=’cubedata’Spectral line imaging with one or more channels
	There is no internal software Doppler tracking so
a spectral line observed over an extended time range
may be smeared out in frequency. There is strictly
no valid spectral frame with which to label the output

images, but they will list the frame defined in the MS.

mode=’cubesource’: Spectral line imaging while
tracking moving source (near field or solar system
objects). The velocity of the source is accounted
and the frequency reported is in the source frame.
As there is not SOURCE frame defined,
the frame reported will be REST (as it may not be
in the rest frame emission region may be
moving w.r.t the systemic velocity frame)

reffreq Reference frequency of the output image coordinate system

Example : reffreq=’1.5GHz’ as a string with units.

By default, it is calculated as the middle of the selected frequency range.

For deconvolver=’mtmfs’ the Taylor expansion is also done about
this specified reference frequency.

	nchan Number of channels in the output image
	For default (=-1), the number of channels will be automatically determined
based on data selected by ‘spw’ with ‘start’ and ‘width’.
It is often easiest to leave nchan at the default value.
example: nchan=100

	start First channel (e.g. start=3,start=’1.1GHz’,start=’15343km/s’)
	of output cube images specified by data channel number (integer),
velocity (string with a unit), or frequency (string with a unit).
Default:’’; The first channel is automatically determined based on
the ‘spw’ channel selection and ‘width’.
When the channel number is used along with the channel selection

in ‘spw’ (e.g. spw=’0:6~100’),

‘start’ channel number is RELATIVE (zero-based) to the selected
channels in ‘spw’. So for the above example,
start=1 means that the first image channel is the second selected
data channel, which is channel 7.
For specmode=’cube’, when velocity or frequency is used it is
interpreted with the frame defined in outframe. [The parameters of
the desired output cube can be estimated by using the ‘transform’
functionality of ‘plotms’]
examples: start=’5.0km/s’; 1st channel, 5.0km/s in outframe

start=’22.3GHz’; 1st channel, 22.3GHz in outframe

	width Channel width (e.g. width=2,width=’0.1MHz’,width=’10km/s’) of output cube images
	specified by data channel number (integer), velocity (string with a unit), or
or frequency (string with a unit).
Default:’’; data channel width
The sign of width defines the direction of the channels to be incremented.
For width specified in velocity or frequency with ‘-’ in front gives image channels in
decreasing velocity or frequency, respectively.
For specmode=’cube’, when velocity or frequency is used it is interpreted with
the reference frame defined in outframe.
examples: width=’2.0km/s’; results in channels with increasing velocity

width=’-2.0km/s’; results in channels with decreasing velocity
width=’40kHz’; results in channels with increasing frequency
width=-2; results in channels averaged of 2 data channels incremented from

high to low channel numbers

	outframe Spectral reference frame in which to interpret ‘start’ and ‘width’
	
Options: ‘’,’LSRK’,’LSRD’,’BARY’,’GEO’,’TOPO’,’GALACTO’,’LGROUP’,’CMB’
example: outframe=’bary’ for Barycentric frame

REST – Rest frequency
LSRD – Local Standard of Rest (J2000)

– as the dynamical definition (IAU, [9,12,7] km/s in galactic coordinates)

	LSRK – LSR as a kinematical (radio) definition
	– 20.0 km/s in direction ra,dec = [270,+30] deg (B1900.0)

BARY – Barycentric (J2000)
GEO — Geocentric
TOPO – Topocentric
GALACTO – Galacto centric (with rotation of 220 km/s in direction l,b = [90,0] deg.
LGROUP – Local group velocity – 308km/s towards l,b = [105,-7] deg (F. Ghigo)

CMB – CMB velocity – 369.5km/s towards l,b = [264.4, 48.4] deg (F. Ghigo)
DEFAULT = LSRK

	veltype Velocity type (radio, z, ratio, beta, gamma, optical)
	For start and/or width specified in velocity, specifies the velocity definition
Options: ‘radio’,’optical’,’z’,’beta’,’gamma’,’optical’
NOTE: the viewer always defaults to displaying the ‘radio’ frame,

but that can be changed in the position tracking pull down.

The different types (with F = f/f0, the frequency ratio), are:

Z = (-1 + 1/F)

RATIO = (F) *
RADIO = (1 - F)
OPTICAL == Z
BETA = ((1 - F2)/(1 + F2))
GAMMA = ((1 + F2)/2F) *
RELATIVISTIC == BETA (== v/c)
DEFAULT == RADIO
Note that the ones with an ‘*’ have no real interpretation
(although the calculation will proceed) if given as a velocity.

	restfreq List of rest frequencies or a rest frequency in a string.
	Specify rest frequency to use for output image.
*Currently it uses the first rest frequency in the list for translation of
velocities. The list will be stored in the output images.
Default: []; look for the rest frequency stored in the MS, if not available,
use center frequency of the selected channels
examples: restfreq=[‘1.42GHz’]

restfreq=’1.42GHz’

interpolation Spectral interpolation (nearest,linear,cubic)

Interpolation rules to use when binning data channels onto image channels
and evaluating visibility values at the centers of image channels.

	Note‘linear’ and ‘cubic’ interpolation requires data points on both sides of
	each image frequency. Errors are therefore possible at edge channels, or near
flagged data channels. When image channel width is much larger than the data
channel width there is nothing much to be gained using linear or cubic thus
not worth the extra computation involved.

gridder Gridding options (standard, wproject, widefield, mosaic, awproject)

The following options choose different gridding convolution
functions for the process of convolutional resampling of the measured
visibilities onto a regular uv-grid prior to an inverse FFT.
Model prediction (degridding) also uses these same functions.
Several wide-field effects can be accounted for via careful choices of
convolution functions. Gridding (degridding) runtime will rise in
proportion to the support size of these convolution functions (in uv-pixels).

standard : Prolate Spheroid with 3x3 uv pixel support size

[This mode can also be invoked using ‘ft’ or ‘gridft’]

	wprojectW-Projection algorithm to correct for the widefield
	

non-coplanar baseline effect. [Cornwell et.al 2008]

wprojplanes is the number of distinct w-values at
which to compute and use different gridding convolution
functions (see help for wprojplanes).

	Convolution function support size can range
	from 5x5 to few 100 x few 100.

[This mode can also be invoked using ‘wprojectft’]

widefield : Facetted imaging with or without W-Projection per facet.

A set of facets x facets subregions of the specified image
are gridded separately using their respective phase centers
(to minimize max W). Deconvolution is done on the joint
full size image, using a PSF from the first subregion.

wprojplanes=1 : standard prolate spheroid gridder per facet.
wprojplanes > 1 : W-Projection gridder per facet.
nfacets=1, wprojplanes > 1 : Pure W-Projection and no facetting
nfacets=1, wprojplanes=1 : Same as standard,ft,gridft

A combination of facetting and W-Projection is relevant only for
very large fields of view.

	mosaicA-Projection with azimuthally symmetric beams without
	
sidelobes, beam rotation or squint correction.
Gridding convolution functions per visibility are computed
from FTs of PB models per antenna.
This gridder can be run on single fields as well as mosaics.

VLA : PB polynomial fit model (Napier and Rots, 1982)
EVLA : PB polynomial fit model (Perley, 2015)
ALMA : Airy disks for a 10.7m dish (for 12m dishes) and

6.25m dish (for 7m dishes) each with 0.75m
blockages (Hunter/Brogan 2011). Joint mosaic
imaging supports heterogeneous arrays for ALMA.

Typical gridding convolution function support sizes are
between 7 and 50 depending on the desired
accuracy (given by the uv cell size or image field of view).

[This mode can also be invoked using ‘mosaicft’ or ‘ftmosaic’]

	awprojectA-Projection with azimuthally asymmetric beams and
	

including beam rotation, squint correction,
conjugate frequency beams and W-projection.
[Bhatnagar et.al, 2008]

Gridding convolution functions are computed from
aperture illumination models per antenna and optionally
combined with W-Projection kernels and a prolate spheroid.
This gridder can be run on single fields as well as mosaics.

	VLAUses ray traced model (VLA and EVLA) including feed
	leg and subreflector shadows, off-axis feed location
(for beam squint and other polarization effects), and
a Gaussian fit for the feed beams (Ref: Brisken 2009)

	ALMASimilar ray-traced model as above (but the correctness
	of its polarization properties remains un-verified).

Typical gridding convolution function support sizes are
between 7 and 50 depending on the desired
accuracy (given by the uv cell size or image field of view).
When combined with W-Projection they can be significantly larger.

[This mode can also be invoked using ‘awprojectft’]

	imagemosaic(untested implementation)
	Grid and iFT each pointing separately and combine the
images as a linear mosaic (weighted by a PB model) in
the image domain before a joint minor cycle.

VLA/ALMA PB models are same as for gridder=’mosaicft’

—— Notes on PB models :

	
	Several different sources of PB models are used in the modes
	listed above. This is partly for reasons of algorithmic flexibility
and partly due to the current lack of a common beam model
repository or consensus on what beam models are most appropriate.

	
	For ALMA and gridder=’mosaic’, ray-traced (TICRA) beams
	are also available via the vpmanager tool.
For example, call the following before the tclean run.

vp.setpbimage(telescope=”ALMA”,
compleximage=’/home/casa/data/trunk/alma/responses/ALMA_0_DV__0_0_360_0_45_90_348.5_373_373_GHz_ticra2007_VP.im’,
antnames=[‘DV’+’%02d’%k for k in range(25)])
vp.saveastable(‘mypb.tab’)
Then, supply vptable=’mypb.tab’ to tclean.
(Currently this will work only for non-parallel runs)

—— Note on PB masks :

In tclean, A-Projection gridders (mosaic and awproject) produce a
.pb image and use the ‘pblimit’ subparameter to decide normalization
cutoffs and construct an internal T/F mask in the .pb and .image images.
However, this T/F mask cannot directly be used during deconvolution
(which needs a 1/0 mask). There are two options for making a pb based
deconvolution mask.

– Run tclean with niter=0 to produce the .pb, construct a 1/0 image

with the desired threshold (using ia.open(‘newmask.im’);
ia.calc(‘iif(“xxx.pb”>0.3,1.0,0.0)’);ia.close() for example),
and supply it via the ‘mask’ parameter in a subsequent run
(with calcres=F and calcpsf=F to restart directly from the minor cycle).

– Run tclean with usemask=’pb’ for it to automatically construct

a 1/0 mask from the internal T/F mask from .pb at a fixed 0.2 threshold.

—– Making PBs for gridders other than mosaic,awproject

After the PSF generation, a PB is constructed using the same
models used in gridder=’mosaic’ but just evaluated in the image
domain without consideration to weights.

facets Number of facets on a side

A set of (facets x facets) subregions of the specified image
are gridded separately using their respective phase centers
(to minimize max W). Deconvolution is done on the joint
full size image, using a PSF from the first subregion/facet.

chanchunks Number of channel chunks to grid separately

For large image cubes, the gridders can run into memory limits
as they loop over all available image planes for each row of data
accessed. To prevent this problem, we can grid subsets of channels
in sequence so that at any given time only part of the image cube
needs to be loaded into memory. This parameter controls the
number of chunks to split the cube into.

Example : chanchunks = 4

	[This feature is experimental and may have restrictions on how
	chanchunks is to be chosen. For now, please pick chanchunks so
that nchan/chanchunks is an integer.]

	wprojplanes Number of distinct w-values at which to compute and use different
	gridding convolution functions for W-Projection

An appropriate value of wprojplanes depends on the presence/absence
of a bright source far from the phase center, the desired dynamic
range of an image in the presence of a bright far out source,
the maximum w-value in the measurements, and the desired trade off
between accuracy and computing cost.

As a (rough) guide, VLA L-Band D-config may require a
value of 128 for a source 30arcmin away from the phase
center. A-config may require 1024 or more. To converge to an
appropriate value, try starting with 128 and then increasing
it if artifacts persist. W-term artifacts (for the VLA) typically look
like arc-shaped smears in a synthesis image or a shift in source
position between images made at different times. These artifacts
are more pronounced the further the source is from the phase center.

There is no harm in simply always choosing a large value (say, 1024)
but there will be a significant performance cost to doing so, especially
for gridder=’awproject’ where it is combined with A-Projection.

wprojplanes=-1 is an option for gridder=’widefield’ or ‘wproject’
in which the number of planes is automatically computed.

vptable vpmanager

	vptable=””Choose default beams for different telescopes
	ALMA : Airy disks
EVLA : old VLA models.

Other primary beam models can be chosen via the vpmanager tool.

Step 1 : Set up the vpmanager tool and save its state in a table

vp.setpbpoly(telescope=’EVLA’, coeff=[1.0, -1.529e-3, 8.69e-7, -1.88e-10])
vp.saveastable(‘myvp.tab’)

Step 2 : Supply the name of that table in tclean.

tclean(….., vptable=’myvp.tab’,….)

Please see the documentation for the vpmanager for more details on how to
choose different beam models. Work is in progress to update the defaults
for EVLA and ALMA.

	NoteAWProjection currently does not use this mechanism to choose
	beam models. It instead uses ray-traced beams computed from
parameterized aperture illumination functions, which are not
available via the vpmanager. So, gridder=’awproject’ does not allow
the user to set this parameter.

usepointing Use the pointing table to determine where the beam are for mosaic gridder; if False then phasecenters of the fields selected are used to determine direction of each mosaic pointing.
mosweight When doing Brigg’s style weighting (including uniform) to perform the weight density calculation for each field indepedently if True. If False the weight density is calculated from the average uv distribution of all the fields.
aterm Use aperture illumination functions during gridding

This parameter turns on the A-term of the AW-Projection gridder.
Gridding convolution functions are constructed from aperture illumination
function models of each antenna.

psterm Use prolate spheroidal during gridding
wbawp Use frequency dependent A-terms

Scale aperture illumination functions appropriately with frequency
when gridding and combining data from multiple channels.

conjbeams Use conjugate frequency for wideband A-terms

While gridding data from one frequency channel, choose a
convolution function from a ‘conjugate’ frequency such that
the resulting baseline primary beam is approximately constant
across frequency. For a system in which the primary beam scales
with frequency, this step will eliminate instrumental spectral
structure from the measured data and leave only the sky spectrum
for the minor cycle to model and reconstruct [Bhatnagar et.al,2013].

As a rough guideline for when this is relevant, a source at the half
power point of the PB at the center frequency will see an artificial
spectral index of -1.4 due to the frequency dependence of the PB
[Sault and Wieringa, 1994]. If left uncorrected during gridding, this
spectral structure must be modeled in the minor cycle (using the
mtmfs algorithm) to avoid dynamic range limits (of a few hundred
for a 2:1 bandwidth).

cfcache Convolution function cache directory name

Name of a directory in which to store gridding convolution functions.
This cache is filled at the beginning of an imaging run. This step can be time
consuming but the cache can be reused across multiple imaging runs that
use the same image parameters (cell size, field-of-view, spectral data
selections, etc).

By default, cfcache = imagename + ‘.cf’

	computepastep At what parallactic angle interval to recompute aperture
	illumination functions (deg)

This parameter controls the accuracy of the aperture illumination function
used with AProjection for alt-az mount dishes where the AIF rotates on the
sky as the synthesis image is built up.

	rotatepastep At what parallactic angle interval to rotate nearest
	aperture illumination function (deg)

Instead of recomputing the AIF for every timestep’s parallactic angle,
the nearest existing AIF is picked and rotated in steps of this amount.

For example, computepastep=360.0 and rotatepastep=5.0 will compute
the AIFs at only the starting parallactic angle and all other timesteps will
use a rotated version of that AIF at the nearest 5.0 degree point.

pblimit PB gain level at which to cut off normalizations

Divisions by .pb during normalizations have a cut off at a .pb gain
level given by pblimit. Outside this limit, image values are set to zero.
Additionally, by default, an internal T/F mask is applied to the .pb, .image and
.residual images to mask out (T) all invalid pixels outside the pblimit area.

	NoteThis internal T/F mask cannot be used as a deconvolution mask.
	To do so, please follow the steps listed above in the Notes for the
‘gridder’ parameter.

	NoteTo prevent the internal T/F mask from appearing in anything other
	than the .pb and .image.pbcor images, ‘pblimit’ can be set to a
negative number. The absolute value will still be used as a valid ‘pblimit’.
A tclean restart using existing output images on disk that already
have this T/F mask in the .residual and .image but only pblimit set
to a negative value, will remove this mask after the next major cycle.

normtype Normalization type (flatnoise, flatsky, pbsquare)

Gridded (and FT’d) images represent the PB-weighted sky image.
Qualitatively it can be approximated as two instances of the PB
applied to the sky image (one naturally present in the data
and one introduced during gridding via the convolution functions).

xxx.weight : Weight image approximately equal to sum (square (pb))
xxx.pb : Primary beam calculated as sqrt (xxx.weight)

	normtype=’flatnoise’Divide the raw image by sqrt(.weight) so that
	the input to the minor cycle represents the
product of the sky and PB. The noise is ‘flat’
across the region covered by each PB.

	normtype=’flatsky’Divide the raw image by .weight so that the input
	to the minor cycle represents only the sky.
The noise is higher in the outer regions of the
primary beam where the sensitivity is low.

	normtype=’pbsquare’No normalization after gridding and FFT.
	The minor cycle sees the sky times pb square

deconvolver Name of minor cycle algorithm (hogbom,clark,multiscale,mtmfs,mem,clarkstokes)

Each of the following algorithms operate on residual images and psfs
from the gridder and produce output model and restored images.
Minor cycles stop and a major cycle is triggered when cyclethreshold
or cycleniter are reached. For all methods, components are picked from
the entire extent of the image or (if specified) within a mask.

	hogbomAn adapted version of Hogbom Clean [Hogbom, 1974]
	
	Find the location of the peak residual

	Add this delta function component to the model image

	Subtract a scaled and shifted PSF of the same size as the image
from regions of the residual image where the two overlap.

	Repeat

	clarkAn adapted version of Clark Clean [Clark, 1980]
	

	Find the location of max(I^2+Q^2+U^2+V^2)

	Add delta functions to each stokes plane of the model image

	Subtract a scaled and shifted PSF within a small patch size
from regions of the residual image where the two overlap.

	After several iterations trigger a Clark major cycle to subtract
components from the visibility domain, but without de-gridding.

	Repeat

	(Note‘clark’ maps to imagermode=’’ in the old clean task.
	
	‘clark_exp’ is another implementation that maps to
	imagermode=’mosaic’ or ‘csclean’ in the old clean task
but the behavior is not identical. For now, please
use deconvolver=’hogbom’ if you encounter problems.)

clarkstokes : Clark Clean operating separately per Stokes plane

(Note : ‘clarkstokes_exp’ is an alternate version. See above.)

	multiscaleMultiScale Clean [Cornwell, 2008]
	
	Smooth the residual image to multiple scale sizes

	Find the location and scale at which the peak occurs

	Add this multiscale component to the model image

	Subtract a scaled,smoothed,shifted PSF (within a small
patch size per scale) from all residual images

	Repeat from step 2

	mtmfsMulti-term (Multi Scale) Multi-Frequency Synthesis [Rau and Cornwell, 2011]
	
	Smooth each Taylor residual image to multiple scale sizes

	Solve a NTxNT system of equations per scale size to compute
Taylor coefficients for components at all locations

	
	Compute gradient chi-square and pick the Taylor coefficients
	and scale size at the location with maximum reduction in
chi-square

	Add multi-scale components to each Taylor-coefficient
model image

	Subtract scaled,smoothed,shifted PSF (within a small patch size
per scale) from all smoothed Taylor residual images

	Repeat from step 2

	memMaximum Entropy Method [Cornwell and Evans, 1985]
	
	Iteratively solve for values at all individual pixels via the
MEM method. It minimizes an objective function of

chi-square plus entropy (here, a measure of difference

between the current model and a flat prior model).

	(NoteThis MEM implementation is not very robust.
	Improvements will be made in the future.)

	scales List of scale sizes (in pixels) for multi-scale and mtmfs algorithms.
	–> scales=[0,6,20]
This set of scale sizes should represent the sizes
(diameters in units of number of pixels)
of dominant features in the image being reconstructed.

The smallest scale size is recommended to be 0 (point source),
the second the size of the synthesized beam and the third 3-5
times the synthesized beam, etc. For example, if the synthesized
beam is 10” FWHM and cell=2”,try scales = [0,5,15].

For numerical stability, the largest scale must be
smaller than the image (or mask) size and smaller than or
comparable to the scale corresponding to the lowest measured
spatial frequency (as a scale size much larger than what the
instrument is sensitive to is unconstrained by the data making
it harder to recovery from errors during the minor cycle).

nterms Number of Taylor coefficients in the spectral model

	nterms=1 : Assume flat spectrum source

	nterms=2 : Spectrum is a straight line with a slope

	nterms=N : A polynomial of order N-1

From a Taylor expansion of the expression of a power law, the
spectral index is derived as alpha = taylorcoeff_1 / taylorcoeff_0

Spectral curvature is similarly derived when possible.

The optimal number of Taylor terms depends on the available
signal to noise ratio, bandwidth ratio, and spectral shape of the
source as seen by the telescope (sky spectrum x PB spectrum).

nterms=2 is a good starting point for wideband EVLA imaging
and the lower frequency bands of ALMA (when fractional bandwidth
is greater than 10%) and if there is at least one bright source for
which a dynamic range of greater than few 100 is desired.

Spectral artifacts for the VLA often look like spokes radiating out from
a bright source (i.e. in the image made with standard mfs imaging).
If increasing the number of terms does not eliminate these artifacts,
check the data for inadequate bandpass calibration. If the source is away
from the pointing center, consider including wide-field corrections too.

	(NoteIn addition to output Taylor coefficient images .tt0,.tt1,etc
	images of spectral index (.alpha), an estimate of error on
spectral index (.alpha.error) and spectral curvature (.beta,
if nterms is greater than 2) are produced.
- These alpha, alpha.error and beta images contain

internal T/F masks based on a threshold computed
as peakresidual/10. Additional masking based on

.alpha/.alpha.error may be desirable.

	.alpha.error is a purely empirical estimate derived
from the propagation of error during the division of
two noisy numbers (alpha = xx.tt1/xx.tt0) where the
‘error’ on tt1 and tt0 are simply the values picked from
the corresponding residual images. The absolute value
of the error is not always accurate and it is best to interpret
the errors across the image only in a relative sense.)

smallscalebias A numerical control to bias the solution towards smaller scales.

The peak from each scale’s smoothed residual is
multiplied by (1 - smallscalebias * scale/maxscale)
to increase or decrease the amplitude relative to other scales,
before the scale with the largest peak is chosen.

	smallscalebias=0.6 (default) applies a slight bias towards small
	scales, ranging from 1.0 for a point source to
0.4 for the largest scale size

Values larger than 0.6 will bias the solution towards smaller scales.
Values smaller than 0.6 will tend towards giving all scales equal weight.

restoration e.

Construct a restored image : imagename.image by convolving the model
image with a clean beam and adding the residual image to the result.
If a restoringbeam is specified, the residual image is also
smoothed to that target resolution before adding it in.

If a .model does not exist, it will make an empty one and create
the restored image from the residuals (with additional smoothing if needed).
With algorithm=’mtmfs’, this will construct Taylor coefficient maps from
the residuals and compute .alpha and .alpha.error.

restoringbeam ize to use.

	restoringbeam=’’ or [‘’]
A Gaussian fitted to the PSF main lobe (separately per image plane).

	restoringbeam=’10.0arcsec’
Use a circular Gaussian of this width for all planes

	restoringbeam=[‘8.0arcsec’,’10.0arcsec’,’45deg’]
Use this elliptical Gaussian for all planes

	restoringbeam=’common’
Automatically estimate a common beam shape/size appropriate for
all planes.

	NoteFor any restoring beam different from the native resolution
	the model image is convolved with the beam and added to
residuals that have been convolved to the same target resolution.

pbcor the output restored image

A new image with extension .image.pbcor will be created from
the evaluation of .image / .pb for all pixels above the specified pblimit.

	NoteStand-alone PB-correction can be triggered by re-running
	tclean with the appropriate imagename and with
niter=0, calcpsf=False, calcres=False, pbcor=True, vptable=’vp.tab’
(where vp.tab is the name of the vpmanager file.

See the inline help for the ‘vptable’ parameter)

	NoteMulti-term PB correction that includes a correction for the
	spectral index of the PB has not been enabled for the 4.7 release.
Please use the widebandpbcor task instead.
(Wideband PB corrections are required when the amplitude of the

brightest source is known accurately enough to be sensitive
to the difference in the PB gain between the upper and lower
end of the band at its location. As a guideline, the artificial spectral
index due to the PB is -1.4 at the 0.5 gain level and less than -0.2
at the 0.9 gain level at the middle frequency)

outlierfile Name of outlier-field image definitions

A text file containing sets of parameter=value pairs,
one set per outlier field.

Example : outlierfile=’outs.txt’

Contents of outs.txt :

imagename=tst1
nchan=1
imsize=[80,80]
cell=[8.0arcsec,8.0arcsec]
phasecenter=J2000 19:58:40.895 +40.55.58.543
mask=circle[[40pix,40pix],10pix]

imagename=tst2
nchan=1
imsize=[100,100]
cell=[8.0arcsec,8.0arcsec]
phasecenter=J2000 19:58:40.895 +40.56.00.000
mask=circle[[60pix,60pix],20pix]

The following parameters are currently allowed to be different between
the main field and the outlier fields (i.e. they will be recognized if found
in the outlier text file). If a parameter is not listed, the value is picked from
what is defined in the main task input.

imagename, imsize, cell, phasecenter, startmodel, mask
specmode, nchan, start, width, nterms, reffreq,
gridder, deconvolver, wprojplanes

	Note‘specmode’ is an option, so combinations of mfs and cube
	
for different image fields, for example, are supported.

	‘deconvolver’ and ‘gridder’ are also options that allow different
	imaging or deconvolution algorithm per image field.

For example, multiscale with wprojection and 16 w-term planes
on the main field and mtmfs with nterms=3 and wprojection
with 64 planes on a bright outlier source for which the frequency
dependence of the primary beam produces a strong effect that
must be modeled. The traditional alternative to this approach is
to first image the outlier, subtract it out of the data (uvsub) and
then image the main field.

	NoteIf you encounter a use-case where some other parameter needs
	to be allowed in the outlier file (and it is logical to do so), please
send us feedback. The above is an initial list.

weighting Weighting scheme (natural,uniform,briggs,superuniform,radial)

During gridding of the dirty or residual image, each visibility value is
multiplied by a weight before it is accumulated on the uv-grid.
The PSF’s uv-grid is generated by gridding only the weights (weightgrid).

	weighting=’natural’Gridding weights are identical to the data weights
	from the MS. For visibilities with similar data weights,
the weightgrid will follow the sample density
pattern on the uv-plane. This weighting scheme
provides the maximum imaging sensitivity at the
expense of a possibly fat PSF with high sidelobes.
It is most appropriate for detection experiments
where sensitivity is most important.

	weighting=’uniform’Gridding weights per visibility data point are the
	original data weights divided by the total weight of
all data points that map to the same uv grid cell :
‘ data_weight / total_wt_per_cell ‘.

The weightgrid is as close to flat as possible resulting
in a PSF with a narrow main lobe and suppressed
sidelobes. However, since heavily sampled areas of
the uv-plane get down-weighted, the imaging
sensitivity is not as high as with natural weighting.
It is most appropriate for imaging experiments where
a well behaved PSF can help the reconstruction.

	weighting=’briggs’Gridding weights per visibility data point are given by
	‘data_weight / (A / total_wt_per_cell + B) ‘ where
A and B vary according to the ‘robust’ parameter.

robust = -2.0 maps to A=1,B=0 or uniform weighting.
robust = +2.0 maps to natural weighting.
(robust=0.5 is equivalent to robust=0.0 in AIPS IMAGR.)

Robust/Briggs weighting generates a PSF that can
vary smoothly between ‘natural’ and ‘uniform’ and
allow customized trade-offs between PSF shape and
imaging sensitivity.

	weighting=’superuniform’This is similar to uniform weighting except that
	
the total_wt_per_cell is replaced by the
total_wt_within_NxN_cells around the uv cell of
interest. (N = subparameter ‘npixels’)

This method tends to give a PSF with inner
sidelobes that are suppressed as in uniform
weighting but with far-out sidelobes closer to
natural weighting. The peak sensitivity is also
closer to natural weighting.

weighting=’radial’ : Gridding weights are given by ‘ data_weight * uvdistance ‘

This method approximately minimizes rms sidelobes
for an east-west synthesis array.

For more details on weighting please see Chapter3
of Dan Briggs’ thesis (http://www.aoc.nrao.edu/dissertations/dbriggs)

robust Robustness parameter for Briggs weighting.

robust = -2.0 maps to uniform weighting.
robust = +2.0 maps to natural weighting.
(robust=0.5 is equivalent to robust=0.0 in AIPS IMAGR.)

	npixels Number of pixels to determine uv-cell size for super-uniform weighting
	
(0 defaults to -/+ 3 pixels)

	npixels – uv-box used for weight calculation
	
a box going from -npixel/2 to +npixel/2 on each side

around a point is used to calculate weight density.

npixels=2 goes from -1 to +1 and covers 3 pixels on a side.

	npixels=0 implies a single pixel, which does not make sense for
	superuniform weighting. Therefore, if npixels=0 it will
be forced to 6 (or a box of -3pixels to +3pixels) to cover
7 pixels on a side.

uvtaper uv-taper on outer baselines in uv-plane

Apply a Gaussian taper in addition to the weighting scheme specified
via the ‘weighting’ parameter. Higher spatial frequencies are weighted
down relative to lower spatial frequencies to suppress artifacts
arising from poorly sampled areas of the uv-plane. It is equivalent to
smoothing the PSF obtained by other weighting schemes and can be
specified either as a Gaussian in uv-space (eg. units of lambda)
or as a Gaussian in the image domain (eg. angular units like arcsec).

uvtaper = [bmaj, bmin, bpa]

NOTE: the on-sky FWHM in arcsec is roughly the uv taper/200 (klambda).
default: uvtaper=[]; no Gaussian taper applied

	example: uvtaper=[‘5klambda’] circular taper
	
	FWHM=5 kilo-lambda
	uvtaper=[‘5klambda’,’3klambda’,’45.0deg’]
uvtaper=[‘10arcsec’] on-sky FWHM 10 arcseconds
uvtaper=[‘300.0’] default units are lambda

in aperture plane

niter Maximum number of iterations

A stopping criterion based on total iteration count.

Iterations are typically defined as the selecting one flux component
and partially subtracting it out from the residual image.

niter=0 : Do only the initial major cycle (make dirty image, psf, pb, etc)

niter larger than zero : Run major and minor cycles.

Note : Global stopping criteria vs major-cycle triggers

In addition to global stopping criteria, the following rules are
used to determine when to terminate a set of minor cycle iterations
and trigger major cycles [derived from Cotton-Schwab Clean, 1984]

	‘cycleniter’controls the maximum number of iterations per image
	plane before triggering a major cycle.

	‘cyclethreshold’Automatically computed threshold related to the
	
max sidelobe level of the PSF and peak residual.

Divergence, detected as an increase of 10% in peak residual from the
minimum so far (during minor cycle iterations)

The first criterion to be satisfied takes precedence.

	NoteIteration counts for cubes or multi-field images :
	
For images with multiple planes (or image fields) on which the
deconvolver operates in sequence, iterations are counted across
all planes (or image fields). The iteration count is compared with
‘niter’ only after all channels/planes/fields have completed their
minor cycles and exited either due to ‘cycleniter’ or ‘cyclethreshold’.
Therefore, the actual number of iterations reported in the logger
can sometimes be larger than the user specified value in ‘niter’.
For example, with niter=100, cycleniter=20,nchan=10,threshold=0,
a total of 200 iterations will be done in the first set of minor cycles
before the total is compared with niter=100 and it exits.

	NoteAdditional global stopping criteria include
	
	no change in peak residual across two major cycles

	a 50% or more increase in peak residual across one major cycle

gain Loop gain

Fraction of the source flux to subtract out of the residual image
for the CLEAN algorithm and its variants.

A low value (0.2 or less) is recommended when the sky brightness
distribution is not well represented by the basis functions used by
the chosen deconvolution algorithm. A higher value can be tried when
there is a good match between the true sky brightness structure and
the basis function shapes. For example, for extended emission,
multiscale clean with an appropriate set of scale sizes will tolerate
a higher loop gain than Clark clean (for example).

threshold Stopping threshold (number in units of Jy, or string)

A global stopping threshold that the peak residual (within clean mask)
across all image planes is compared to.

threshold = 0.005 : 5mJy
threshold = ‘5.0mJy’

	NoteA ‘cyclethreshold’ is internally computed and used as a major cycle
	
trigger. It is related what fraction of the PSF can be reliably
used during minor cycle updates of the residual image. By default
the minor cycle iterations terminate once the peak residual reaches
the first sidelobe level of the brightest source.

	‘cyclethreshold’ is computed as follows using the settings in
	parameters ‘cyclefactor’,’minpsffraction’,’maxpsffraction’,’threshold’ :

psf_fraction = max_psf_sidelobe_level * ‘cyclefactor’
psf_fraction = max(psf_fraction, ‘minpsffraction’);
psf_fraction = min(psf_fraction, ‘maxpsffraction’);
cyclethreshold = peak_residual * psf_fraction
cyclethreshold = max(cyclethreshold, ‘threshold’)

If nsigma is set (>0.0), the N-sigma threshold is calculated (see
the description under nsigma), then cyclethreshold is further modified as,

cyclethreshold = max(cyclethreshold, nsgima_threshold)

‘cyclethreshold’ is made visible and editable only in the
interactive GUI when tclean is run with interactive=True.

nsigma Multiplicative factor for rms-based threshold stopping

N-sigma threshold is calculated as nsigma * rms value per image plane determined
from a robust statistics. For nsigma > 0.0, in a minor cycle, a maximum of the two values,
the N-sigma threshold and cyclethreshold, is used to trigger a major cycle
(see also the descreption under ‘threshold’).
Set nsigma=0.0 to preserve the previous tclean behavior without this feature.

	cycleniter Maximum number of minor-cycle iterations (per plane) before triggering
	a major cycle

For example, for a single plane image, if niter=100 and cycleniter=20,
there will be 5 major cycles after the initial one (assuming there is no
threshold based stopping criterion). At each major cycle boundary, if
the number of iterations left over (to reach niter) is less than cycleniter,
it is set to the difference.

	Notecycleniter applies per image plane, even if cycleniter x nplanes
	gives a total number of iterations greater than ‘niter’. This is to
preserve consistency across image planes within one set of minor
cycle iterations.

cyclefactor Scaling on PSF sidelobe level to compute the minor-cycle stopping threshold.

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

cyclefactor=1.0 results in a cyclethreshold at the first sidelobe level of
the brightest source in the residual image before the minor cycle starts.

cyclefactor=0.5 allows the minor cycle to go deeper.
cyclefactor=2.0 triggers a major cycle sooner.

minpsffraction PSF fraction that marks the max depth of cleaning in the minor cycle

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

For example, minpsffraction=0.5 will stop cleaning at half the height of
the peak residual and trigger a major cycle earlier.

maxpsffraction PSF fraction that marks the minimum depth of cleaning in the minor cycle

Please refer to the Note under the documentation for ‘threshold’ that
discussed the calculation of ‘cyclethreshold’

For example, maxpsffraction=0.8 will ensure that at least the top 20
percent of the source will be subtracted out in the minor cycle even if
the first PSF sidelobe is at the 0.9 level (an extreme example), or if the
cyclefactor is set too high for anything to get cleaned.

interactive Modify masks and parameters at runtime

interactive=True will trigger an interactive GUI at every major cycle
boundary (after the major cycle and before the minor cycle).

The interactive mode is currently not available for parallel cube imaging (please also
refer to the Note under the documentation for ‘parallel’ below).

Options for runtime parameter modification are :

	Interactive clean maskDraw a 1/0 mask (appears as a contour) by hand.
	If a mask is supplied at the task interface or if
automasking is invoked, the current mask is
displayed in the GUI and is available for manual
editing.

	NoteIf a mask contour is not visible, please
	check the cursor display at the bottom of
GUI to see which parts of the mask image
have ones and zeros. If the entire mask=1
no contours will be visible.

	Operation buttons– Stop execution now (restore current model and exit)
	
	– Continue on until global stopping criteria are reached
	without stopping for any more interaction

	– Continue with minor cycles and return for interaction
	after the next major cycle.

Iteration control : – max cycleniter : Trigger for the next major cycle

The display begins with
[min(cycleniter, niter - itercount)]
and can be edited by hand.

—iterations left : The display begins with [niter-itercount]
and can be edited to increase or
decrease the total allowed niter.

– threshold : Edit global stopping threshold

—cyclethreshold : The display begins with the
automatically computed value
(see Note in help for ‘threshold’),
and can be edited by hand.

All edits will be reflected in the log messages that appear
once minor cycles begin.

	[For scripting purposes, replacing True/False with 1/0 will get tclean to
	return an imaging summary dictionary to python]

usemask Type of mask(s) to be used for deconvolution

	user: (default) mask image(s) or user specified region file(s) or string CRTF expression(s)
	subparameters: mask, pbmask

	pb: primary beam mask
	subparameter: pbmask

	Example: usemask=”pb”, pbmask=0.2
	Construct a mask at the 0.2 pb gain level.
(Currently, this option will work only with
gridders that produce .pb (i.e. mosaic and awproject)
or if an externally produced .pb image exists on disk)

	auto-multithreshauto-masking by multiple thresholds for deconvolution
	
	subparameterssidelobethreshold, noisethreshold, lownoisethreshold, negativethrehsold, smoothfactor,
	minbeamfrac, cutthreshold, pbmask, growiterations, dogrowprune, minpercentchange, verbose

if pbmask is >0.0, the region outside the specified pb gain level is excluded from
image statistics in determination of the threshold.

	Note: By default the intermediate mask generated by automask at each deconvolution cycle
	is over-written in the next cycle but one can save them by setting
the environment variable, SAVE_ALL_AUTOMASKS=”true”.
(e.g. in the CASA prompt, os.environ[‘SAVE_ALL_AUTOMASKS’]=”true”)
The saved CASA mask image name will be imagename.mask.autothresh#, where
is the iteration cycle number.

mask Mask (a list of image name(s) or region file(s) or region string(s)

The name of a CASA image or region file or region string that specifies
a 1/0 mask to be used for deconvolution. Only locations with value 1 will
be considered for the centers of flux components in the minor cycle.
If regions specified fall completely outside of the image, tclean will throw an error.

Manual mask options/examples :

	mask=’xxx.mask’Use this CASA image named xxx.mask and containing
	ones and zeros as the mask.
If the mask is only different in spatial coordinates from what is being made
it will be resampled to the target coordinate system before being used.
The mask has to have the same shape in velocity and Stokes planes
as the output image. Exceptions are single velocity and/or single
Stokes plane masks. They will be expanded to cover all velocity and/or
Stokes planes of the output cube.

	[NoteIf an error occurs during image resampling or
	if the expected mask does not appear, please try
using tasks ‘imregrid’ or ‘makemask’ to resample
the mask image onto a CASA image with the target
shape and coordinates and supply it via the ‘mask’
parameter.]

	mask=’xxx.crtf’A text file with region strings and the following on the first line
	(#CRTFv0 CASA Region Text Format version 0)
This is the format of a file created via the viewer’s region
tool when saved in CASA region file format.

mask=’circle[[40pix,40pix],10pix]’ : A CASA region string.

mask=[‘xxx.mask’,’xxx.crtf’, ‘circle[[40pix,40pix],10pix]’] : a list of masks

	NoteMask images for deconvolution must contain 1 or 0 in each pixel.
	Such a mask is different from an internal T/F mask that can be
held within each CASA image. These two types of masks are not
automatically interchangeable, so please use the makemask task
to copy between them if you need to construct a 1/0 based mask
from a T/F one.

	NoteWork is in progress to generate more flexible masking options and
	enable more controls.

pbmask Sub-parameter for usemask=’auto-multithresh’: primary beam mask

	Examplespbmask=0.0 (default, no pb mask)
	pbmask=0.2 (construct a mask at the 0.2 pb gain level)

sidelobethreshold Sub-parameter for “auto-multithresh”: mask threshold based on sidelobe levels: sidelobethreshold * max_sidelobe_level * peak residual
noisethreshold Sub-parameter for “auto-multithresh”: mask threshold based on the noise level: noisethreshold * rms

The rms is calculated from MAD with rms = 1.4826*MAD.

lownoisethreshold Sub-parameter for “auto-multithresh”: mask threshold to grow previously masked regions via binary dilation: lownoisethreshold * rms in residual image

The rms is calculated from MAD with rms = 1.4826*MAD.

negativethreshold Sub-parameter for “auto-multithresh”: mask threshold for negative features: -1.0* negativethreshold * rms

The rms is calculated from MAD with rms = 1.4826*MAD.

smoothfactor Sub-parameter for “auto-multithresh”: smoothing factor in a unit of the beam
minbeamfrac Sub-parameter for “auto-multithresh”: minimum beam fraction in size to prune masks smaller than mimbeamfrac * beam

<=0.0 : No pruning

cutthreshold Sub-parameter for “auto-multithresh”: threshold to cut the smoothed mask to create a final mask: cutthreshold * peak of the smoothed mask
growiterations Sub-parameter for “auto-multithresh”: Maximum number of iterations to perform using binary dilation for growing the mask
dogrowprune Experimental sub-parameter for “auto-multithresh”: Do pruning on the grow mask
minpercentchange If the change in the mask size in a particular channel is less than minpercentchange, stop masking that channel in subsequent cycles. This check is only applied when noise based threshold is used and when the previous clean major cycle had a cyclethreshold value equal to the clean threshold. Values equal to -1.0 (or any value less than 0.0) will turn off this check (the default). Automask will still stop masking if the current channel mask is an empty mask and the noise threshold was used to determine the mask.
verbose he summary of automasking at the end of each automasking process

is printed in the logger. Following information per channel will be listed in the summary.

chan: channel number
masking?: F - stop updating automask for the subsequent iteration cycles
RMS: robust rms noise
peak: peak in residual image
thresh_type: type of threshold used (noise or sidelobe)
thresh_value: the value of threshold used
N_reg: number of the automask regions
N_pruned: number of the automask regions removed by pruning
N_grow: number of the grow mask regions
N_grow_pruned: number of the grow mask regions removed by pruning
N_neg_pix: number of pixels for negative mask regions

Note that for a large cube, extra logging may slow down the process.

	restart images (and start from an existing model image)
	or automatically increment the image name and make a new image set.

	TrueRe-use existing images. If imagename.model exists the subsequent
	
run will start from this model (i.e. predicting it using current gridder
settings and starting from the residual image). Care must be taken
when combining this option with startmodel. Currently, only one or
the other can be used.

	startmodel=’’, imagename.model exists :
	
	Start from imagename.model

	startmodel=’xxx’, imagename.model does not exist :
	
	Start from startmodel

	startmodel=’xxx’, imagename.model exists :
	

	Exit with an error message requesting the user to pick
only one model. This situation can arise when doing one
run with startmodel=’xxx’ to produce an output
imagename.model that includes the content of startmodel,
and wanting to restart a second run to continue deconvolution.
Startmodel should be set to ‘’ before continuing.

If any change in the shape or coordinate system of the image is
desired during the restart, please change the image name and
use the startmodel (and mask) parameter(s) so that the old model
(and mask) can be regridded to the new coordinate system before starting.

	FalseA convenience feature to increment imagename with ‘_1’, ‘_2’,
	
etc as suffixes so that all runs of tclean are fresh starts (without
having to change the imagename parameter or delete images).

This mode will search the current directory for all existing
imagename extensions, pick the maximum, and adds 1.
For imagename=’try’ it will make try.psf, try_2.psf, try_3.psf, etc.

This also works if you specify a directory name in the path :
imagename=’outdir/try’. If ‘./outdir’ does not exist, it will create it.
Then it will search for existing filenames inside that directory.

If outlier fields are specified, the incrementing happens for each
of them (since each has its own ‘imagename’). The counters are
synchronized across imagefields, to make it easier to match up sets
of output images. It adds 1 to the ‘max id’ from all outlier names
on disk. So, if you do two runs with only the main field

(imagename=’try’), and in the third run you add an outlier with
imagename=’outtry’, you will get the following image names
for the third run : ‘try_3’ and ‘outtry_3’ even though
‘outry’ and ‘outtry_2’ have not been used.

savemodel Options to save model visibilities (none, virtual, modelcolumn)

Often, model visibilities must be created and saved in the MS
to be later used for self-calibration (or to just plot and view them).

	noneDo not save any model visibilities in the MS. The MS is opened
	in readonly mode.

Model visibilities can be predicted in a separate step by
restarting tclean with niter=0,savemodel=virtual or modelcolumn
and not changing any image names so that it finds the .model on
disk (or by changing imagename and setting startmodel to the
original imagename).

	virtualIn the last major cycle, save the image model and state of the
	gridder used during imaging within the SOURCE subtable of the
MS. Images required for de-gridding will also be stored internally.
All future references to model visibilities will activate the
(de)gridder to compute them on-the-fly. This mode is useful
when the dataset is large enough that an additional model data
column on disk may be too much extra disk I/O, when the
gridder is simple enough that on-the-fly recomputing of the
model visibilities is quicker than disk I/O.

	modelcolumnIn the last major cycle, save predicted model visibilities
	in the MODEL_DATA column of the MS. This mode is useful when
the de-gridding cost to produce the model visibilities is higher
than the I/O required to read the model visibilities from disk.
This mode is currently required for gridder=’awproject’.
This mode is also required for the ability to later pull out
model visibilities from the MS into a python array for custom
processing.

	Note 1The imagename.model image on disk will always be constructed
	if the minor cycle runs. This savemodel parameter applies only to
model visibilities created by de-gridding the model image.

	Note 2It is possible for an MS to have both a virtual model
	as well as a model_data column, but under normal operation,
the last used mode will get triggered. Use the delmod task to
clear out existing models from an MS if confusion arises.

calcres Calculate initial residual image

This parameter controls what the first major cycle does.

calcres=False with niter greater than 0 will assume that
a .residual image already exists and that the minor cycle can
begin without recomputing it.

calcres=False with niter=0 implies that only the PSF will be made
and no data will be gridded.

calcres=True requires that calcpsf=True or that the .psf and .sumwt
images already exist on disk (for normalization purposes).

	Usage exampleFor large runs (or a pipeline scripts) it may be
	useful to first run tclean with niter=0 to create
an initial .residual to look at and perhaps make
a custom mask for. Imaging can be resumed
without recomputing it.

calcpsf Calculate PSF

This parameter controls what the first major cycle does.

calcpsf=False will assume that a .psf image already exists
and that the minor cycle can begin without recomputing it.

parallel Run major cycles in parallel (this feature is experimental)

Parallel tclean will run only if casa has already been started using mpirun.
Please refer to HPC documentation for details on how to start this on your system.

Example : mpirun -n 3 -xterm 0 which casa

	Continuum Imaging :
	
	Data are partitioned (in time) into NProc pieces

	Gridding/iFT is done separately per partition

	Images (and weights) are gathered and then normalized

	One non-parallel minor cycle is run

	Model image is scattered to all processes

	Major cycle is done in parallel per partition

	Cube Imaging :
	
	Data and Image coordinates are partitioned (in freq) into NProc pieces

	Each partition is processed independently (major and minor cycles)

	All processes are synchronized at major cycle boundaries for convergence checks

	At the end, cubes from all partitions are concatenated along the spectral axis

	Note 1Iteration control for cube imaging is independent per partition.
	

	
	There is currently no communication between them to synchronize
	information such as peak residual and cyclethreshold. Therefore,
different chunks may trigger major cycles at different levels.

	For cube imaging in parallel, there is currently no interactive masking.

(Proper synchronization of iteration control is work in progress.)

 importeovsa

importeovsa

Module Contents

Classes

	_importeovsa

	importeovsa ---- Parallelized import EOVSA idb file(s) to a measurement set or multiple measurement set.

Functions

	static_var(varname, value)

	

Attributes

	importeovsa

	

	
importeovsa.static_var(varname, value)

	

	
class importeovsa._importeovsa

	importeovsa —- Parallelized import EOVSA idb file(s) to a measurement set or multiple measurement set.

Parallelized imports an arbitrary number of EOVSA idb-format data sets into
a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window.

——— parameter descriptions ———————————————

idbfiles Name of input EOVSA idb file(s) or observation time range.
ncpu Number of cpu cores to use
timebin Bin width for time averaging
width Width of output channel relative to MS channel (# to average)
visprefix Prefix of vis names (may include the path).
udb_corr if applying correction to input UDB files before import to MS.
nocreatms If setting nocreatms True, will simulate a model measurement set for the first idb file and copy the model for the rest of idl files in list. If False, will simulate a new measurement set for every idbfile in list.
doconcat If concatenate multi casa measurement sets to one file.
modelms Name of input model measurement set file. If modelms is assigned, no simulation will start.
doscaling If creating a new MS file with the amplitude of visibility data rescaled.
keep_nsclms Keep the no scaling measurement sets
use_exist_udbcorr If use the existed udb_corr results.

——— examples ———————————————————–

Parallelized imports an arbitrary number of EOVSA idb-format data sets into
a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window.

Detailed Keyword arguments:

idbfiles – Name of input EOVSA idb file(s)
default: none. Must be supplied
example: idbfiles = ‘IDB20160524000518’
example: idbfiles=[‘IDB20160524000518’,’IDB20160524000528’]

ncpu – Number of cpu cores to use
default: 8

visprefix – Prefix of vis names (may include the path)
default: none;
example: visprefix=’sun/’]

— Data Selection —

nocreatms – If copying a new MS file instead of create one from MS simulator.
default: False

modelms – Name of the standard Measurement Set. IF modelms is not provided, use
‘/home/user/sjyu/20160531/ms/sun/SUN/SUN_20160531T142234-10m.1s.ms’ as a standard MS.

doconcat – If outputing one single MS file

— Channel averaging parameter —

width – Number of input channels to average to create an output
channel. If a list is given, each bin will apply to one spw in
the selection.
default: 1 => no channel averaging.
options: (int) or [int]

example: chanbin=[2,3] => average 2 channels of 1st selected
spectral window and 3 in the second one.

— Time averaging parameters —

timebin – Bin width for time averaging. When timebin is greater than 0s,
the task will average data in time. Flagged data will be included
in the average calculation, unless the parameter keepflags is set to False.
In this case only partially flagged rows will be used in the average.
default: ‘0s’

	
_info_group_ = 'Import/export'

	

	
_info_desc_ = 'Parallelized import EOVSA idb file(s) to a measurement set or multiple measurement set.'

	

	
__schema

	

	
__globals_()

	

	
__to_string_(value)

	

	
__validate_(doc, schema)

	

	
__do_inp_output(param_prefix, description_str, formatting_chars)

	

	
__width_dflt(glb)

	

	
__width(glb)

	

	
__idbfiles_dflt(glb)

	

	
__idbfiles(glb)

	

	
__doscaling_dflt(glb)

	

	
__doscaling(glb)

	

	
__ncpu_dflt(glb)

	

	
__ncpu(glb)

	

	
__modelms_dflt(glb)

	

	
__modelms(glb)

	

	
__visprefix_dflt(glb)

	

	
__visprefix(glb)

	

	
__timebin_dflt(glb)

	

	
__timebin(glb)

	

	
__udb_corr_dflt(glb)

	

	
__udb_corr(glb)

	

	
__nocreatms_dflt(glb)

	

	
__nocreatms(glb)

	

	
__doconcat_dflt(glb)

	

	
__doconcat(glb)

	

	
__use_exist_udbcorr(glb)

	

	
__use_exist_udbcorr_dflt(glb)

	

	
__keep_nsclms_dflt(glb)

	

	
__keep_nsclms(glb)

	

	
__idbfiles_inp()

	

	
__ncpu_inp()

	

	
__timebin_inp()

	

	
__width_inp()

	

	
__visprefix_inp()

	

	
__udb_corr_inp()

	

	
__nocreatms_inp()

	

	
__doconcat_inp()

	

	
__modelms_inp()

	

	
__doscaling_inp()

	

	
__keep_nsclms_inp()

	

	
__use_exist_udbcorr_inp()

	

	
set_global_defaults()

	

	
inp()

	

	
tget(savefile=None)

	

	
tput(outfile=None)

	

	
__call__(idbfiles=None, ncpu=None, timebin=None, width=None, visprefix=None, udb_corr=None, nocreatms=None, doconcat=None, modelms=None, doscaling=None, keep_nsclms=None, use_exist_udbcorr=None)

	

	
importeovsa.importeovsa

	

 ptclean6

ptclean6

Module Contents

Classes

	_ptclean6

	ptclean6 ---- Parallelized tclean in consecutive time steps

Functions

	static_var(varname, value)

	

Attributes

	ptclean6

	

	
ptclean6.static_var(varname, value)

	

	
class ptclean6._ptclean6

	ptclean6 —- Parallelized tclean in consecutive time steps

Parallelized clean in consecutive time steps. Packed over CASA 6 tclean.

——— parameter descriptions ———————————————

	vis Name(s) of input visibility file(s)
	default: none;
example: vis=’ngc5921.ms’

vis=[‘ngc5921a.ms’,’ngc5921b.ms’]; multiple MSes

imageprefix Prefix of output image names (usually useful in defining the output path)
imagesuffix Suffix of output image names (usually useful in specifyting the image type, version, etc.)
ncpu Number of cpu cores to use
twidth Number of time pixels to average
doreg True if use vla_prep to register the image
usephacenter True if use the phacenter information from the measurement set (e.g., VLA); False to assume the phase center is at the solar disk center (EOVSA)
reftime Reference time of the J2000 coordinates associated with the ephemeris target. e.g., “2012/03/03/12:00”. This is used for helioimage2fits.py to find the solar x y offset in order to register the image. If not set, use the actual timerange of the image (default)
toTb True if convert to brightness temperature
sclfactor scale the brightness temperature up by its value
subregion The name of a CASA region string

The name of a CASA image or region file or region string. Only locations within the region will
output to the fits file.
If regions specified fall completely outside of the image, ptclean6 will throw an error.

Manual mask options/examples :

subregion=’box[[224pix,224pix],[288pix,288pix]]’ : A CASA region string.

docompress True if compress the output fits files
overwrite True if overwrite the image
selectdata Enable data selection parameters.
field to image or mosaic. Use field id(s) or name(s).

[‘go listobs’ to obtain the list id’s or names]

	default: ‘’= all fields
	If field string is a non-negative integer, it is assumed to
be a field index otherwise, it is assumed to be a
field name
field=’0~2’; field ids 0,1,2
field=’0,4,5~7’; field ids 0,4,5,6,7
field=’3C286,3C295’; field named 3C286 and 3C295
field = ‘3,4C*’; field id 3, all names starting with 4C
For multiple MS input, a list of field strings can be used:
field = [‘0~2’,’0~4’]; field ids 0-2 for the first MS and 0-4

for the second

field = ‘0~2’; field ids 0-2 for all input MSes

	spw l window/channels
	
	NOTE: channels de-selected here will contain all zeros if
	selected by the parameter mode subparameters.

	default: ‘’=all spectral windows and channels
	spw=’0~2,4’; spectral windows 0,1,2,4 (all channels)
spw=’0:5~61’; spw 0, channels 5 to 61
spw=’<2’; spectral windows less than 2 (i.e. 0,1)
spw=’0,10,3:3~45’; spw 0,10 all channels, spw 3,

channels 3 to 45.

spw=’0~2:2~6’; spw 0,1,2 with channels 2 through 6 in each.
For multiple MS input, a list of spw strings can be used:
spw=[‘0’,’0~3’]; spw ids 0 for the first MS and 0-3 for the second
spw=’0~3’ spw ids 0-3 for all input MS
spw=’3:10~20;50~60’ for multiple channel ranges within spw id 3
spw=’3:10~20;50~60,4:0~30’ for different channel ranges for spw ids 3 and 4
spw=’0:0~10,1:20~30,2:1;2;3’; spw 0, channels 0-10,

spw 1, channels 20-30, and spw 2, channels, 1,2 and 3

spw=’1~4;6:15~48’ for channels 15 through 48 for spw ids 1,2,3,4 and 6

timerange Range of time to select from data

default: ‘’ (all); examples,
timerange = ‘YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss’
Note: if YYYY/MM/DD is missing date defaults to first

day in data set

timerange=’09:14:0~09:54:0’ picks 40 min on first day
timerange=’25:00:00~27:30:00’ picks 1 hr to 3 hr

30min on NEXT day

	timerange=’09:44:00’ pick data within one integration
	of time

timerange=’> 10:24:00’ data after this time
For multiple MS input, a list of timerange strings can be
used:
timerange=[‘09:14:0~09:54:0’,’> 10:24:00’]
timerange=’09:14:0~09:54:0’’; apply the same timerange for

all input MSes

	uvrange Select data within uvrange (default unit is meters)
	default: ‘’ (all); example:
uvrange=’0~1000klambda’; uvrange from 0-1000 kilo-lambda
uvrange=’> 4klambda’;uvranges greater than 4 kilo lambda
For multiple MS input, a list of uvrange strings can be
used:
uvrange=[‘0~1000klambda’,’100~1000klamda’]
uvrange=’0~1000klambda’; apply 0-1000 kilo-lambda for all

input MSes

antenna Select data based on antenna/baseline

default: ‘’ (all)
If antenna string is a non-negative integer, it is
assumed to be an antenna index, otherwise, it is
considered an antenna name.
antenna=’5&6’; baseline between antenna index 5 and

index 6.

	antenna=’VA05&VA06’; baseline between VLA antenna 5
	and 6.

antenna=’5&6;7&8’; baselines 5-6 and 7-8
antenna=’5’; all baselines with antenna index 5
antenna=’05’; all baselines with antenna number 05

(VLA old name)

	antenna=’5,6,9’; all baselines with antennas 5,6,9
	index number

For multiple MS input, a list of antenna strings can be
used:
antenna=[‘5’,’5&6’];
antenna=’5’; antenna index 5 for all input MSes
antenna=’!DV14’; use all antennas except DV14

scan Scan number range

default: ‘’ (all)
example: scan=’1~5’
For multiple MS input, a list of scan strings can be used:
scan=[‘0~100’,’10~200’]
scan=’0~100; scan ids 0-100 for all input MSes

	observation Observation ID range
	default: ‘’ (all)
example: observation=’1~5’

intent Scan Intent(s)

default: ‘’ (all)
example: intent=’TARGET_SOURCE’
example: intent=’TARGET_SOURCE1,TARGET_SOURCE2’
example: intent=’TARGET_POINTING*’

	datacolumn Data column to image (data or observed, corrected)
	default:’corrected’
(If ‘corrected’ does not exist, it will use ‘data’ instead)

imagename Pre-name of output images

example : imagename=’try’

Output images will be (a subset of) :

try.psf - Point spread function
try.residual - Residual image
try.image - Restored image
try.model - Model image (contains only flux components)
try.sumwt - Single pixel image containing sum-of-weights.

(for natural weighting, sensitivity=1/sqrt(sumwt))

try.pb - Primary beam model (values depend on the gridder used)

Widefield projection algorithms (gridder=mosaic,awproject) will
compute the following images too.
try.weight - FT of gridded weights or the

un-normalized sum of PB-square (for all pointings)
Here, PB = sqrt(weight) normalized to a maximum of 1.0

For multi-term wideband imaging, all relevant images above will
have additional .tt0,.tt1, etc suffixes to indicate Taylor terms,
plus the following extra output images.
try.alpha - spectral index
try.alpha.error - estimate of error on spectral index
try.beta - spectral curvature (if nterms > 2)

	TipInclude a directory name in ‘imagename’ for all
	output images to be sent there instead of the
current working directory : imagename=’mydir/try’

	TipRestarting an imaging run without changing ‘imagename’
	

	implies continuation from the existing model image on disk.
	
	If ‘startmodel’ was initially specified it needs to be set to “”
for the restart run (or tclean will exit with an error message).

	By default, the residual image and psf will be recomputed
but if no changes were made to relevant parameters between
the runs, set calcres=False, calcpsf=False to resume directly from
the minor cycle without the (unnecessary) first major cycle.

To automatically change ‘imagename’ with a numerical
increment, set restart=False (see tclean docs for ‘restart’).

	NoteAll imaging runs will by default produce restored images.
	For a niter=0 run, this will be redundant and can optionally
be turned off via the ‘restoration=T/F’ parameter.

	imsize Number of pixels
	
	exampleimsize = [350,250]
	imsize = 500 is equivalent to [500,500]

To take proper advantage of internal optimized FFT routines, the
number of pixels must be even and factorizable by 2,3,5,7 only.

	cell Cell size
	example: cell=[‘0.5arcsec,’0.5arcsec’] or
cell=[‘1arcmin’, ‘1arcmin’]
cell = ‘1arcsec’ is equivalent to [‘1arcsec’,’1arcsec’]

	phasecenter Phase center of the image (string or field id); if the phasecenter is the name known major solar system object (‘MERCURY’, ‘VENUS’, ‘MARS’, ‘JUPITER’, ‘SATURN’, ‘URANUS’, ‘NEPTUNE’, ‘PLUTO’, ‘SUN’, ‘MOON’) or is an ephemerides table then that source is tracked and the background sources get smeared. There is a special case, when phasecenter=’TRACKFIELD’, which will use the ephemerides or polynomial phasecenter in the FIELD table of the MS’s as the source center to track.
	
	example: phasecenter=6
	phasecenter=’J2000 19h30m00 -40d00m00’
phasecenter=’J2000 292.5deg -40.0deg’
phasecenter=’J2000 5.105rad -0.698rad’
phasecenter=’ICRS 13:05:27.2780 -049.28.04.458’
phasecenter=’myComet_ephem.tab’
phasecenter=’MOON’
phasecenter=’TRACKFIELD’

	stokes Stokes Planes to make
	
	default=’I’; example: stokes=’IQUV’;
	Options: ‘I’,’Q’,’U’,’V’,’IV’,’QU’,’IQ’,’UV’,’IQUV’,’RR’,’LL’,’XX’,’YY’,’RRLL’,’XXYY’,’pseudoI’

	NoteDue to current internal code constraints, if any correlation pair
	is flagged, by default, no data for that row in the MS will be used.
So, in an MS with XX,YY, if only YY is flagged, neither a
Stokes I image nor an XX image can be made from those data points.
In such a situation, please split out only the unflagged correlation into
a separate MS.

	NoteThe ‘pseudoI’ option is a partial solution, allowing Stokes I imaging
	when either of the parallel-hand correlations are unflagged.

The remaining constraints shall be removed (where logical) in a future release.

	projection Coordinate projection
	Examples : SIN, NCP
A list of supported (but untested) projections can be found here :
http://casa.nrao.edu/active/docs/doxygen/html/classcasa_1_1Projection.html#a3d5f9ec787e4eabdce57ab5edaf7c0cd

startmodel Name of starting model image

The contents of the supplied starting model image will be
copied to the imagename.model before the run begins.

example : startmodel = ‘singledish.im’

For deconvolver=’mtmfs’, one image per Taylor term must be provided.
example : startmodel = [‘try.model.tt0’, ‘try.model.tt1’]

	startmodel = [‘try.model.tt0’] will use a starting model only
	for the zeroth order term.

	startmodel = [‘’,’try.model.tt1’] will use a starting model only
	for the first order term.

This starting model can be of a different image shape and size from
what is currently being imaged. If so, an image regrid is first triggered
to resample the input image onto the target coordinate system.

A common usage is to set this parameter equal to a single dish image

Negative components in the model image will be included as is.

	[NoteIf an error occurs during image resampling/regridding,
	please try using task imregrid to resample the starting model
image onto a CASA image with the target shape and
coordinate system before supplying it via startmodel]

specmode Spectral definition mode (mfs,cube,cubedata, cubesource)

	mode=’mfs’Continuum imaging with only one output image channel.
	(mode=’cont’ can also be used here)

	mode=’cube’Spectral line imaging with one or more channels
	
Parameters start, width,and nchan define the spectral
coordinate system and can be specified either in terms
of channel numbers, frequency or velocity in whatever
spectral frame is specified in ‘outframe’.
All internal and output images are made with outframe as the
base spectral frame. However imaging code internally uses the fixed
spectral frame, LSRK for automatic internal software
Doppler tracking so that a spectral line observed over an
extended time range will line up appropriately.
Therefore the output images have additional spectral frame conversion
layer in LSRK on the top the base frame.

	(NoteEven if the input parameters are specified in a frame
	other than LSRK, the viewer still displays spectral
axis in LSRK by default because of the conversion frame
layer mentioned above. The viewer can be used to relabel
the spectral axis in any desired frame - via the spectral
reference option under axis label properties in the
data display options window.)

	mode=’cubedata’Spectral line imaging with one or more channels
	There is no internal software Doppler tracking so
a spectral line observed over an extended time range
may be smeared out in frequency. There is strictly
no valid spectral frame with which to label the output
images, but they will list the frame defined in the MS.

mode=’cubesource’: Spectral line imaging while
tracking moving source (near field or solar system
objects). The velocity of the source is accounted
and the frequency reported is in the source frame.
As there is not SOURCE frame defined,
the frame reported will be REST (as it may not be
in the rest frame emission region may be
moving w.r.t the systemic velocity frame)

reffreq Reference frequency of the output image coordinate system

Example : reffreq=’1.5GHz’ as a string with units.

By default, it is calculated as the middle of the selected frequency range.

For deconvolver=’mtmfs’ the Taylor expansion is also done about
this specified reference frequency.

	nchan Number of channels in the output image
	For default (=-1), the number of channels will be automatically determined
based on data selected by ‘spw’ with ‘start’ and ‘width’.
It is often easiest to leave nchan at the default value.
example: nchan=100

	start First channel (e.g. start=3,start=’1.1GHz’,start=’15343km/s’)
	of output cube images specified by data channel number (integer),
velocity (string with a unit), or frequency (string with a unit).
Default:’’; The first channel is automatically determined based on
the ‘spw’ channel selection and ‘width’.
When the channel number is used along with the channel selection

in ‘spw’ (e.g. spw=’0:6~100’),

‘start’ channel number is RELATIVE (zero-based) to the selected
channels in ‘spw’. So for the above example,
start=1 means that the first image channel is the second selected
data channel, which is channel 7.
For specmode=’cube’, when velocity or frequency is used it is
interpreted with the frame defined in outframe. [The parameters of
the desired output cube can be estimated by using the ‘transform’
functionality of ‘plotms’]
examples: start=’5.0km/s’; 1st channel, 5.0km/s in outframe

start=’22.3GHz’; 1st channel, 22.3GHz in outframe

	width Channel width (e.g. width=2,width=’0.1MHz’,width=’10km/s’) of output cube images
	specified by data channel number (integer), velocity (string with a unit), or
or frequency (string with a unit).
Default:’’; data channel width
The sign of width defines the direction of the channels to be incremented.
For width specified in velocity or frequency with ‘-’ in front gives image channels in
decreasing velocity or frequency, respectively.
For specmode=’cube’, when velocity or frequency is used it is interpreted with
the reference frame defined in outframe.
examples: width=’2.0km/s’; results in channels with increasing velocity

width=’-2.0km/s’; results in channels with decreasing velocity
width=’40kHz’; results in channels with increasing frequency
width=-2; results in channels averaged of 2 data channels incremented from

high to low channel numbers

	outframe Spectral reference frame in which to interpret ‘start’ and ‘width’
	
Options: ‘’,’LSRK’,’LSRD’,’BARY’,’GEO’,’TOPO’,’GALACTO’,’LGROUP’,’CMB’
example: outframe=’bary’ for Barycentric frame

REST – Rest frequency
LSRD – Local Standard of Rest (J2000)

– as the dynamical definition (IAU, [9,12,7] km/s in galactic coordinates)

	LSRK – LSR as a kinematical (radio) definition
	– 20.0 km/s in direction ra,dec = [270,+30] deg (B1900.0)

BARY – Barycentric (J2000)
GEO — Geocentric
TOPO – Topocentric
GALACTO – Galacto centric (with rotation of 220 km/s in direction l,b = [90,0] deg.
LGROUP – Local group velocity – 308km/s towards l,b = [105,-7] deg (F. Ghigo)

CMB – CMB velocity – 369.5km/s towards l,b = [264.4, 48.4] deg (F. Ghigo)
DEFAULT = LSRK

	veltype Velocity type (radio, z, ratio, beta, gamma, optical)
	For start and/or width specified in velocity, specifies the velocity definition
Options: ‘radio’,’optical’,’z’,’beta’,’gamma’,’optical’
NOTE: the viewer always defaults to displaying the ‘radio’ frame,

but that can be changed in the position tracking pull down.

The different types (with F = f/f0, the frequency ratio), are:

Z = (-1 + 1/F)

RATIO = (F) *
RADIO = (1 - F)
OPTICAL == Z
BETA = ((1 - F2)/(1 + F2))
GAMMA = ((1 + F2)/2F) *
RELATIVISTIC == BETA (== v/c)
DEFAULT == RADIO
Note that the ones with an ‘*’ have no real interpretation
(although the calculation will proceed) if given as a velocity.

	restfreq List of rest frequencies or a rest frequency in a string.
	Specify rest frequency to use for output image.
*Currently it uses the first rest frequency in the list for translation of
velocities. The list will be stored in the output images.
Default: []; look for the rest frequency stored in the MS, if not available,
use center frequency of the selected channels
examples: restfreq=[‘1.42GHz’]

restfreq=’1.42GHz’

interpolation Spectral interpolation (nearest,linear,cubic)

Interpolation rules to use when binning data channels onto image channels
and evaluating visibility values at the centers of image channels.

	Note‘linear’ and ‘cubic’ interpolation requires data points on both sides of
	each image frequency. Errors are therefore possible at edge channels, or near
flagged data channels. When image channel width is much larger than the data
channel width there is nothing much to be gained using linear or cubic thus
not worth the extra computation involved.

	perchanweightdensity When calculating weight density for Briggs
	style weighting in a cube, this parameter
determines whether to calculate the weight
density for each channel independently
(the default, True)
or a common weight density for all of the selected
data. This parameter has no
meaning for continuum (specmode=’mfs’) imaging
or for natural and radial weighting schemes.
For cube imaging
perchanweightdensity=True is a recommended
option that provides more uniform
sensitivity per channel for cubes, but with
generally larger psfs than the
perchanweightdensity=False (prior behavior)
option. When using Briggs style weight with
perchanweightdensity=True, the imaging weight
density calculations use only the weights of
data that contribute specifically to that
channel. On the other hand, when
perchanweightdensity=False, the imaging
weight density calculations sum all of the
weights from all of the data channels
selected whose (u,v) falls in a given uv cell
on the weight density grid. Since the
aggregated weights, in any given uv cell,
will change depending on the number of
channels included when imaging, the psf
calculated for a given frequency channel will
also necessarily change, resulting in
variability in the psf for a given frequency
channel when perchanweightdensity=False. In
general, perchanweightdensity=False results
in smaller psfs for the same value of
robustness compared to
perchanweightdensity=True, but the rms noise
as a function of channel varies and increases
toward the edge channels;
perchanweightdensity=True provides more
uniform sensitivity per channel for
cubes. This may make it harder to find
estimates of continuum when
perchanweightdensity=False. If you intend to
image a large cube in many smaller subcubes
and subsequently concatenate